Name:

Pid: \qquad

1. (10 points) Prove that there is an undecidable set W such that the sets $\{x:(n, x) \in W\}$ and $\{x:(x, n) \in W\}$ are decidable for all $n \in \mathbb{N}$

Solution: Let us consider the set $W=\{(n, n): U(n, n)=1\}$. It is easy to see that the set is undecidable. However, the sets $\{x:(n, x) \in W\}$ and $\{x:(x, n) \in W\}$ are all finite sets (they have either 0 or 1 element); hence, they are decidable.
2. (10 points) Let $U: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a Gödel universal function. Prove that there is $p \in \mathbb{N}$ such that

$$
U(p, x)= \begin{cases}1 & \text { if } x=p^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Solution: Let $V(n, x)$ be an algorithm such that

$$
V(n, x)= \begin{cases}1 & \text { if } x=n^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Since U is a Gödel universal function there is a total $s: \mathbb{N} \rightarrow \mathbb{N}$ such that $U(s(n), x)=V(n, x)$ for all $n, x \in \mathbb{N}$. Bote that by Klene's theorem, there is $n_{0} \in \mathbb{N}$ such that $U\left(n_{0}, x\right)=U\left(s\left(n_{0}\right), x\right)=V\left(n_{0}, x\right)$ for all $x \in \mathbb{N}$; i.e., there is $n_{0} \in \mathbb{N}$ such that

$$
U\left(n_{0}, x\right)= \begin{cases}1 & \text { if } x=n_{0}^{2} \\ 0 & \text { otherwise }\end{cases}
$$

