\qquad

Pid: \qquad

1. (10 points) Let $S \subseteq \mathbb{N}$ be a nonempty set. Show that S is decidable iff there is a funciton $f: \mathbb{N} \rightarrow \mathbb{N}$ such that f is computable, f is nondecreasing, and $\operatorname{Im} f=S$.

Solution: Let us assume that S is decidable and \mathcal{A} decides S. Let $x_{\text {min }}$ be the minimal element of S. Consider the following algorithm.

```
    function \mathcal{F}
```

 if \(n<x_{\text {min }}\) then
 return \(x_{\text {min }}\)
 end if
 Let \(x \leftarrow n\)
 while \(\neg \mathcal{A}(x)\) and \(x>x_{\text {min }}\) do
 \(x \leftarrow x-1\)
 end while
 return \(x\)
 end function

It is clear that this algorithm computes the total function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(x)= \begin{cases}x_{\min } & \text { if } x<x_{\min } \\ \max \{y \in S: y \leq x\} & \text { otherwise }\end{cases}
$$

Therefore f is nondecreasing. We need to prove now that $\operatorname{Im} f=S$. To prove this firt we note that it is easy to see that $\operatorname{Im} f \subseteq S$. In addtion, if $x \in S$, then $f(x)=x$, which implies that $\operatorname{Im} f=S$.
Let us now prove the statement in the opposite dirrection. Assume that there is a total nondecreasing funciton $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{Im} f=S$.

- If S is finite, then we prove in class that it is decidable.
- Let S be an infinite set, and let \mathcal{F} be an algorithm computing f. Consider the following algorithm

```
function \(\mathcal{A}(x)\)
        while \(\mathcal{F}(n)<x\) do
            \(n \leftarrow n+1\)
        end while
        if \(\mathcal{F}(n)=x\) then
            return 1
        else
            return 0
        end if
    end function
```

In lines 2-4 this algorithm finds the minimal n such that $f(n) \geq x$ (it always exists since S is infinite). If $x \in S$, then such a minumal n is equal x, and the algorithm returns 1 . Otherwise $f(n) \neq x$ and the algorithm returns 0 .
2. (10 points) Let $A, B \subseteq \mathbb{N}$ be enumeratable sets. Show that $A \times B$ is enumeratable.

```
Solution: Let \(\mathcal{A}\) and \(\mathcal{B}\) be semideciding algorithms for \(A\) and \(B\), respectively. Consider the following
algorithm.
    function \(\mathcal{C}(x, y)\)
        \(\mathcal{A}(x)\)
        \(\mathcal{B}(x)\)
        return 1
    end function
```

Note that if $x \in A$ and $y \in B$, then the algorithm return 1. Otherwise the algorithm never terminates. Therefore, if $(x, y) \in A \times B$, then the algorithm return 1. Otherwise the algorithm never terminates.

