Name: \qquad

Pid: \qquad

1. (10 points) Let us formulate the pigeonhole principle using propositional formulas. $\Omega=$ $\left\{x_{1,1}, \ldots, x_{n+1,1}, x_{1,2} \ldots, x_{n+1, n}\right\}$ (informally $x_{i, j}$ is true iff the i th pigeon is in the j th hole). Consider the following propositional formulas on the variables from Ω.

- $L_{i}(i \in[n+1])$ is equal to $\bigvee_{j=1}^{n} x_{i, j}$. (Informally this formula says that the i th pigeon is in a hole.)
- $R_{j}(j \in[n])$ is equal to $\bigvee_{i_{1}=1}^{n+1} \bigvee_{i_{2}=i_{1}+1}^{n+1}\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right)$. (Informally this formula says that there are two pigeons in the j th hole.)

Show that there is a natural deduction proof of $\left(\bigwedge_{i=1}^{n+1} L_{i}\right) \Longrightarrow\left(\bigvee_{i=1}^{n} R_{i}\right)$.

Solution: Let $\phi=\left(\bigwedge_{i=1}^{n+1} L_{i}\right) \Longrightarrow\left(\bigvee_{i=1}^{n} R_{i}\right)$. Note that if we prove that $\left.\phi\right|_{\rho}$ is true for any assignement ρ, then by completeness theorem there is a natural deduction proof of ϕ.
Therefore it is enough to show that $\left.\phi\right|_{\rho}$ is true for any assignement ρ. Let us fix some ρ.

- If $\left.\left(\bigwedge_{i=1}^{n+1} L_{i}\right)\right|_{\rho}$ is false, then $\left.\phi\right|_{\rho}$ is true.
- If $\left.\left(\bigvee_{i=1}^{n} R_{i}\right)\right|_{\rho}$ is false, then $\left.\phi\right|_{\rho}$ is true.
- Hence, to finish the proof we need to show that any other case is impossible. Assume that $\left.\left(\bigvee_{i=1}^{n} R_{i}\right)\right|_{\rho}$ and $\left.\left(\bigwedge_{i=1}^{n+1} L_{i}\right)\right|_{\rho}$ are true.
Note that the fact that the first formula is true guarantees that $\sum_{i=1} \sum j=1 \rho\left(x_{i, j}\right) \geq n+$ 1. However, the second formula says that $\sum_{i=1} \sum j=1 \rho\left(x_{i, j}\right) \leq n$, which leads us to a contradiction.

2. (10 points) Let $\phi=\bigvee_{i=1}^{m} \lambda_{i}$ be a clause; we say that the width of the clause is equal to m. Let $\phi=\bigwedge_{i=1}^{\ell} \chi_{i}$ be a formula in CNF; we say that the width of ϕ is equal to the maximal width of χ_{i} for $i \in[\ell]$.
Let $p_{n}:\{T, F\}^{n} \rightarrow\{T, F\}$ such that $p_{n}\left(x_{1}, \ldots, x_{n}\right)=T$ iff the set $\left\{i: x_{i}=T\right\}$ has odd number of elements. Show that any CNF representation of p_{n} has width at least n.

Solution: Let us assume the opposite; i.e., that there is a formula $\phi=\bigwedge_{i=1}^{m} C_{i}$ CNF such that $\left.\phi\right|_{x_{1}=v_{1}, \ldots, x_{n}=v_{n}}=p_{n}\left(v_{1}, \ldots, v_{n}\right)$ for all $v_{1}, \ldots, v_{n} \in\{T, F\}^{n}$ and width of each C_{i} is less than n Without loss of generality we may assume that $C_{1}=x_{1} \vee \cdots \vee x_{k}$ for $k<n$. Let us consider a propositional assignement ρ to the variables x_{1}, \ldots, x_{n} such that $\rho_{u}\left(x_{i}\right)=\left\{\begin{array}{ll}F & \text { if } i \leq k \\ u & \text { if } i=k+1 \\ F & \text { otherwise } .\end{array}\right.$ It is clear that $\left.\phi\right|_{\rho_{T}}=\left.\phi\right|_{\rho_{F}}=F$. However, $p_{n}\left(\rho_{T}\left(x_{1}\right), \ldots, \rho_{T}\left(x_{n}\right)\right) \neq p_{n}\left(\rho_{F}\left(x_{1}\right), \ldots, \rho_{F}\left(x_{n}\right)\right)$; therefore, $\left.\phi\right|_{\rho_{T}} \neq\left.\phi\right|_{\rho_{F}}$. As a result, the assumption is wrong.
3. (10 points) Write a natural deduction derivation of $(W \vee Y) \Longrightarrow(X \vee Z)$ from hypotheses $W \Longrightarrow X$ and $Y \Longrightarrow Z$.

Solution: $\qquad \begin{array}{l}1 \\ 2 \\ \\ \\ 3\end{array}$ 4 		
	$W \Longrightarrow X$	
	$Y \Longrightarrow Z$	
	$W \vee Y$	
	W	
	X	$\Rightarrow \mathrm{E}, 1,4$
	$X \vee Z$	$\vee \mathrm{I}, 5$
	Y	
	Z	$\Rightarrow \mathrm{E}, 2,7$
	$X \vee Z$	$\checkmark \mathrm{I}, 8$
	$X \vee Z$	$\vee \mathrm{E}, 3,4-6,7-9$
	$(W \vee Y) \Longrightarrow(X \vee Z)$	$\Rightarrow \mathrm{I}, 3-10$

4. (10 points) We say that a clause C can be obtained from clauses A and B using the resolution rule if $C=A^{\prime} \vee B^{\prime}, A=x \vee A^{\prime}$, and $B=\neg x \vee B^{\prime}$, for some variable x.
We say that a clause C can be derived from clauses A_{1}, \ldots, A_{m} using resolutions if there is a sequence of clauses $D_{1}, \ldots, D_{\ell}=C$ such that each D_{i}

- is either obtained from clauses D_{j} and D_{k} for $j, k<i$ using the resolution rule, or
- is equal to A_{j} for some $j \in[m]$, or
- is equal to $D_{j} \vee E$ for some $j<i$ and a clause E.

Show that if A_{1}, \ldots, A_{m} semantically imply C, then C can be derived from clauses A_{1}, \ldots, A_{m} using resolutions.

Solution: First we prove that if clauses A_{1}, \ldots, A_{n} semantically imply \perp, then there is a derivation of \perp from A_{1}, \ldots, A_{n} using the resolution rule.
We prove this using the induction on the number k of variables used in clauses A_{1}, \ldots, A_{n}. The base case for $k=0$ is clear since in this case $A_{i}=\perp$ for all $i \in[n]$.
Let us now prove the induction step from k to $k+1$. We fix a variable x that is used by clauses A_{1}, \ldots, A_{n}. Let us split set of clauses A_{1}, \ldots, A_{n} into three groups:

- the clauses $x \vee B_{1}, \ldots, x \vee B_{p}$ (i.e., the clauses that contain x),
- the clauses $\neg x \vee C_{1}, \ldots, \neg x \vee C_{q}$ (i.e., the clauses that contain $\neg x$),
- the clauses D_{1}, \ldots, D_{r} (i.e., the clauses that neither contain x, nor $\neg x$).

Note that any assignment that sets x to be equal to T cannot make all A_{i} to be true since A_{1}, \ldots, A_{n} semantically imply \perp. Therefore, $C_{1}, \ldots, C_{q}, D_{1}, \ldots, D_{r}$ semantically imply \perp. However, by the induction hypothesis, there is a derivation of \perp from $C_{1}, \ldots, C_{q}, D_{1}, \ldots, D_{r}$ using the resolution rule. It is easy to see that this imply that there is a derivation of $\neg x$ from $\neg x \vee C_{1}, \ldots, \neg x \vee C_{q}$, D_{1}, \ldots, D_{r}. Similarly, there is a derivation of x from $x \vee B_{1}, \ldots, x \vee B_{p}, D_{1}, \ldots, D_{r}$. Hence, using the resolution rule we can derive \perp from A_{1}, \ldots, A_{n}.

