Name:

Pid: _____

- 1. (10 points) Let us formulate the pigeonhole principle using propositional formulas. $\Omega = \{x_{1,1}, \ldots, x_{n+1,1}, x_{1,2}, \ldots, x_{n+1,n}\}$ (informally $x_{i,j}$ is true iff the *i*th pigeon is in the *j*th hole). Consider the following propositional formulas on the variables from Ω .
 - L_i $(i \in [n+1])$ is equal to $\bigvee_{j=1}^n x_{i,j}$. (Informally this formula says that the *i*th pigeon is in a hole.)
 - R_j $(j \in [n])$ is equal to $\bigvee_{i_1=1}^{n+1} \bigvee_{i_2=i_1+1}^{n+1} (x_{i_1,j} \wedge x_{i_2,j})$. (Informally this formula says that there are two pigeons in the *j*th hole.)

Show that there is a natural deduction proof of $\left(\bigwedge_{i=1}^{n+1} L_i\right) \implies (\bigvee_{i=1}^n R_i).$

Solution: Let $\phi = \left(\bigwedge_{i=1}^{n+1} L_i\right) \implies \left(\bigvee_{i=1}^n R_i\right)$. Note that if we prove that $\phi|_{\rho}$ is true for any assignment ρ , then by completeness theorem there is a natural deduction proof of ϕ . Therefore it is enough to show that $\phi|_{\rho}$ is true for any assignment ρ . Let us fix some ρ .

- If $\left(\bigwedge_{i=1}^{n+1} L_i\right)\Big|_{\rho}$ is false, then $\phi|_{\rho}$ is true.
- If $(\bigvee_{i=1}^{n} R_i) \Big|_{\rho}$ is false, then $\phi|_{\rho}$ is true.
- Hence, to finish the proof we need to show that any other case is impossible. Assume that $(\bigvee_{i=1}^{n} R_i)|_{\rho}$ and $(\bigwedge_{i=1}^{n+1} L_i)|_{\rho}$ are true.

Note that the fact that the first formula is true guarantees that $\sum_{i=1} \sum_{j=1} j = 1\rho(x_{i,j}) \ge n + 1$. However, the second formula says that $\sum_{i=1} \sum_{j=1} j = 1\rho(x_{i,j}) \le n$, which leads us to a contradiction.

2. (10 points) Let $\phi = \bigvee_{i=1}^{m} \lambda_i$ be a clause; we say that the width of the clause is equal to m. Let $\phi = \bigwedge_{i=1}^{\ell} \chi_i$ be a formula in CNF; we say that the width of ϕ is equal to the maximal width of χ_i for $i \in [\ell]$.

Let $p_n : \{T, F\}^n \to \{T, F\}$ such that $p_n(x_1, \ldots, x_n) = T$ iff the set $\{i : x_i = T\}$ has odd number of elements. Show that any CNF representation of p_n has width at least n.

Solution: Let us assume the opposite; i.e., that there is a formula $\phi = \bigwedge_{i=1}^{m} C_i$ CNF such that $\phi|_{x_1=v_1,\ldots,x_n=v_n} = p_n(v_1,\ldots,v_n)$ for all $v_1,\ldots,v_n \in \{T,F\}^n$ and width of each C_i is less than n. Without loss of generality we may assume that $C_1 = x_1 \lor \cdots \lor x_k$ for k < n. Let us consider a propositional assignment ρ to the variables x_1,\ldots,x_n such that $\rho_u(x_i) = \begin{cases} F & \text{if } i \leq k \\ u & \text{if } i = k+1 \end{cases}$ It is clear that $\phi|_{\rho_T} = \phi|_{\rho_F} = F$. However, $p_n(\rho_T(x_1),\ldots,\rho_T(x_n)) \neq p_n(\rho_F(x_1),\ldots,\rho_F(x_n))$; therefore, $\phi|_{\rho_T} \neq \phi|_{\rho_F}$. As a result, the assumption is wrong.

$1 \mid W$	$\implies X$		
$2 \qquad Y$	$\implies Z$		
3	$W \lor Y$		
4	W		
5	X	\Rightarrow E, 1, 4	
6	$X \lor Z$	\lor I, 5	
7	Y		
8	Z	\Rightarrow E, 2, 7	
9	$X \lor Z$	\lor I, 8	
10	$X \lor Z$	$\vee E, 3, 4-6, 7-9$	
11 (W	$(V \lor Y) \implies (X \lor Z)$	⇒I, 3–10	

3. (10 points) Write a natural deduction derivation of $(W \lor Y) \implies (X \lor Z)$ from hypotheses $W \implies X$ and $Y \implies Z$.

4. (10 points) We say that a clause C can be obtained from clauses A and B using the resolution rule if $C = A' \vee B'$, $A = x \vee A'$, and $B = \neg x \vee B'$, for some variable x.

We say that a clause C can be derived from clauses A_1, \ldots, A_m using resolutions if there is a sequence of clauses $D_1, \ldots, D_\ell = C$ such that each D_i

- is either obtained from clauses D_j and D_k for j, k < i using the resolution rule, or
- is equal to A_j for some $j \in [m]$, or
- is equal to $D_j \vee E$ for some j < i and a clause E.

Show that if A_1, \ldots, A_m semantically imply C, then C can be derived from clauses A_1, \ldots, A_m using resolutions.

Solution: First we prove that if clauses A_1, \ldots, A_n semantically imply \perp , then there is a derivation of \perp from A_1, \ldots, A_n using the resolution rule.

We prove this using the induction on the number k of variables used in clauses A_1, \ldots, A_n . The base case for k = 0 is clear since in this case $A_i = \perp$ for all $i \in [n]$.

Let us now prove the induction step from k to k + 1. We fix a variable x that is used by clauses A_1 , ..., A_n . Let us split set of clauses A_1 , ..., A_n into three groups:

- the clauses $x \vee B_1, \ldots, x \vee B_p$ (i.e., the clauses that contain x),
- the clauses $\neg x \lor C_1, \ldots, \neg x \lor C_q$ (i.e., the clauses that contain $\neg x$),
- the clauses D_1, \ldots, D_r (i.e., the clauses that neither contain x, nor $\neg x$).

Note that any assignment that sets x to be equal to T cannot make all A_i to be true since A_1, \ldots, A_n semantically imply \perp . Therefore, $C_1, \ldots, C_q, D_1, \ldots, D_r$ semantically imply \perp . However, by the induction hypothesis, there is a derivation of \perp from $C_1, \ldots, C_q, D_1, \ldots, D_r$ using the resolution rule. It is easy to see that this imply that there is a derivation of $\neg x$ from $\neg x \lor C_1, \ldots, \neg x \lor C_q$, D_1, \ldots, D_r . Similarly, there is a derivation of x from $x \lor B_1, \ldots, x \lor B_p, D_1, \ldots, D_r$. Hence, using the resolution rule we can derive \perp from A_1, \ldots, A_n .