
Math 15A Solutions to Practice Final 1 January 24, 2019

Name:

Pid:

Note that since this class is about proofs, every statement in the final exam should be proved.
The only exceptions are statements that were proven in previous homework or midterms and
statements proven earlier in the class.

1. (20 points) Check all the correct statements.

© For any positive integer n, |[n]2| > |[n]|.
© If you have 15 balls in 5 boxes, then there is a box with at least 3 balls.

© There are 12 elements in the set [6] ∪ {x : 12 < x < 19}.
© There are 10 ways to select 2 objects out of 3.

© The set [2][3] has 8 elements.

© The function f : [2]→ [3] such that f(x) = x belongs to the set [2][3].

© The function −x is a bijection from R to R.

© p ∧ ¬p is always true.

© There is an injection from [5]× [5] to [25].

© A function f : X → Y is an injection iff the set {x ∈ X : f(x) = y} has cardinality at most
1 for all y ∈ Y .

Solution:

1. Note that |[n]2| = n2 and |[n]| = n. It is easy to see that n2 > n for n > 1 and n2 = n for
n = 1.

2. By the generalized pigeonhole principle, there is a box with at least 15
5 = 3 balls.

3. Note that these sets are disjoint, thus the size of the union is equal to 6 + |{x : 12 < x <
19}| = 6 + 6 = 12.

4. There are 3·2
2 = 3 ways to select 2 objects out of 3.

5. We proved that the set Y X has |Y ||X| elements, so the set [2][3] has 8 elements.

6. Note that the set [2][3] is the set of functions from [3] to [2], thus f does not belong to this set.

7. It is clearly a bijection, since it is the inverse of itself.

8. It is not always true, since false and not false is false.

9. Yes, it is true, moreover, there is a bijection.

10. Yes, it is true, it is exactly the definition of the injection, written a bit differently.
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2. (10 points) Prove the following recurrent formula:

S(n, k) = k · S(n− 1, k − 1) + k · S(n− 1, k),

where S(n, k) denotes the number of surjective functions from [n] to [k].

Solution: Note that there are two possible situations when we define a surjection f : [n] → [k]:
either f(i) 6= f(n) for any i < n or f(i) = f(n) for some i < n.

• Assume, we need to construct a surjection f : [n]→ [k] such that f(i) 6= f(n). In this case we
have k ways to select f(n) and S(n−1, k−1) ways to select f |[n−1]; i.e. there are kS(n−1, k−1)
such surjections f .

• Assume, we need to construct a surjection f : [n]→ [k] such that f(i) 6= f(n). In this case we
have k ways to select f(n) and S(n − 1, k) ways to select f |[n−1]; i.e. there are kS(n − 1, k)
such surjections f .

Thus by the additive principle, the number of surjections from [n] to [k] is equal to k · S(n− 1, k −
1) + k · S(n− 1, k).
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3. (10 points) Show that
n∑

k=1

k
(
n
k

)
= n2n−1 for any positive integer n ≥ 2.

Solution: Imagine that we have n people in a group and we need to choose a subgroup of them
and a head of this subgroup.

It is easy to see that we have n ways to select the head and 2n−1 ways to select the rest of the
subgroup. On the other hand, if we know that the subgroup has i members, then there are

(
n
i

)
ways

to select the subgroup and i ways to select the head, thus there are
∑n

k=1 k
(
n
k

)
ways to select the

subgroup and its leader. As a result, n2n−1 =
∑n

k=1 k
(
n
k

)
.
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4. (10 points) In school there are three clubs and for any two students there is at least one club such that
both of them are in this club. Show that for some club 2/3 of the students are in this club.

Solution: We need to consider the following two cases.

1. If there is a student participating in only one club. In this case all the other students are in
this club as well. Thus more than 2/3 students in this club.

2. Otherwise, all the students participate in at least 2 clubs. Let p1, p2, and p3 be the numbers
of members in these clubs. Note that p1 +p2 +p3 ≥ 2n. Thus pi ≥ 2/3n for some i ∈ {1, 2, 3}.
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5. (10 points) We say that a function f : {0, 1}n → {0, 1} depends on the ith argument iff for some
a1, . . . , ai−1, ai+1, . . . , an ∈ {0, 1}

f(a1, . . . , ai−1, 0, ai+1, . . . , an) 6= f(a1, . . . , ai−1, 1, ai+1, . . . , an).

We also say that the function f depends on all the arguments iff for all i ∈ [n] it depends on ith argument.

Find the number of functions f : {0, 1}n → {0, 1} depending on all arguments.

Solution: Let S ⊆ [n] and Fi be the set of function from {0, 1}n to {0, 1} not depending on the ith

input. It is easy to see that there are 22
n−1

elements in Fi and moreover, there are 22
n−|S|

elements
in the set ∩i∈SFi. Thus by the inclusion-exclusion principle, there are

∑
S⊆[n] : S 6=∅

(−1)|S|+122
n−|S|

=

n∑
k=1

(−1)k22
n−k

(
n

k

)

functions not depending on at least one argument. As a result, the answe is 22
n −∑n

k=1(−1)k22
n−k(n

k

)
.
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6. (10 points) How many integer numbers from 0 to 999 are having at least one digit equal to 7.

Solution: First note that any number from 0 to 999 may be expressed using 3 digits (we allow to
use leading 0s to express the numbers like 1). Thus we need to find the size of the set

{(a1, a2, a3) : a1, a2, a3 ∈ {0, 1 . . . , 9} and 7 ∈ {a1, a2, a3}}.

Let S ⊆ [3], it is easy to see that
⋂

i∈S{(a1, a2, a3) : a1, a2, a3 ∈ {0, 1 . . . , 9} and ai = 7}} has 10|S|

elements. As a result, the answer is 1000− 3 · 102 + 3 · 10− 1.
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7. (10 points) Let us consider Young’s geometry, it is a theory with undefined terms: point, line, is on,
and axioms:

1. there exists at least one line,

2. every line has exactly three points on it,

3. not all points are on the same line,

4. for two distinct points, there exists exactly one line on both of them,

5. if a point does not lie on a given line, then there exists exactly one line on that point that does not
intersect the given line.

Show that for every point, there are exactly four lines on that point.

Solution: First, we prove that for every point, there is a line not on that point. Let p be some point.
By the first axiom, there is a line `. Assume that p is on ` (otherwise we proved the statement). By
axiom 2, there are two other points p1 and p2 on this line. By axiom 3, there is a point q not on `.
Finally, by axiom 4, there is a line `′ on p1 and q. Note that `′ 6= `, thus p is not on `′.

Now we are ready to prove that there are at least four lines. Let p be a point and ` be a line such
that p is not on `. By axiom 2, there are three points p1, p2, and p3 on `. By axiom 4, there are
lines `1, `2, and `3 such that p is on all of them and pi is on `i for i ∈ [3]. By axiom 5, there is a
line `4 containg p but p1, p2, and p3 are not on `4. Thus, there are at least four lines through p.

Let us now prove that there is no other line `5 such that p is on `5. By axiom 5, there is a point pi
such that pi is on both `5 and `. But this contradicts to axiom 4, since pi is also on `i.


