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In the previous chapters we used the property that
the set is finite. However, we have never defined
formally what it means. In this chapter we define
cardinality which is a formalization of the notion
size of the set.

8.1 Bijections

Definition 8.1. Let f : X ! Y be a function. We
say that f is a bijection iff the following properties
are satisfied.

• Every element of Y is an image of some element of X. In other words,

8y 2 Y 9x 2 X f(x) = y.

• Images of any two elements of X are different. In other words,

8x1, x2 2 X f(x1) 6= f(x2).

Let us consider the following example. Let f : R ! R be a function such
that f(x) = x+ 1; Note that it is a bijection:

• If f(x1) = f(x2), then x1 + 1 = x2 + 1 i.e. x1 = x2.

• For any y 2 R, f(y � 1) = (y � 1) + 1 = y.

Exercise 8.1. Show that x3 is a bijection.

One of the nicest properties of bijections is that composition of two bijections
is a bijection.

51

https://youtu.be/fW5Zxg0TMDc
https://youtu.be/fW5Zxg0TMDc


52 CHAPTER 8. BIJECTIONS, SURJECTIONS, AND INJECTIONS

Theorem 8.1. Let X, Y , and Z be some sets and f : X ! Y and g : Y ! Z
be bijections. Then (g � f) : X ! Z is also a bijection.

Proof. We need to check two properties.

• Let x1 6= x2 2 X. Note that f(x1) 6= f(x2) since f is a bijection. Hence,
g(f(x1)) 6= g(f(x2)) since g is a bijection as well. As a result, (g�f)(x1) 6=
(g � f)(x2).

• Let z 2 Z; we need to find x 2 X such that (g � f)(x) = y. Note that
since g is a bijection there is y 2 Y such that g(y) = z. Additionally, there
is x 2 X such that f(x) = y since f is a bijection. Thus, (g � f)(x) =
g(f(x)) = z.

Probably the most important property of a bijection is that we may invert
it.

Theorem 8.2. Let f : X ! Y be a function. f is invertible (i.e. there is a
function g : Y ! X such that (f � g)(y) = y and (g � f)(x) = x for all x 2 X
and y 2 Y ) iff f is a bijection.

Proof. ) Let’s assume that f is invertible. We need to prove that f is a
bijection.

• Let’s assume that f does not satisfy the first property in the defini-
tions of bijections i.e. there are x1, x2 2 X such that f(x1) = f(x2)
but x1 = g(f(x1)) = g(f(x2)) = x2, which is a contradiction.

• Let y 2 Y . Note that f(g(y)) = y, hence, Imf = Y .

( Let’s assume that f is bijective. We need to define a function g : Y ! X
which is an inverse of f . Let y 2 Y , note that there is a unique x such
that f(x) = y, we define g(y) = x. Note that f(g(y)) = y for every y by
the construction of g. Additionally, g(f(x)) = x since f(g(f(x))) = f(x)
and f is a bijection.

One may notice that if we have a bijection f from [n] to a set S we enumerate
all the elements of S: f(1), . . . , f(n). This observation allows us to define the
cardinality of a set.

Definition 8.2. Let S be a set, we say that cardinality of S is equal to n (we
write that |S| = n) iff there is a bijection from [n] to S.

We also say that a set T is finite if there is an integer n such that |T | = n.

Note that this definition does not guarantee that cardinality is unique.

Theorem 8.3. For any set S, if there are bijections f : [n] ! S and g : [m] !
S, then n = m.
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Proof. Let us consider the inverse g�1 of g. Note that h = f � g�1 is a bijection
from [n] to [m].

We prove using induction by n that for any n,m 2 N, if there is a bijection
h0 from [n] to [m], then n = m. The base case is for n = 1; if m � 2, then there
are x, y 2 [1] such that h0(x) = 1 and h0(y) = 2, but x 6= y and we have only
one element in [1].

The induction step is also simple. Assume that there is a bijection h0 from
[n+ 1] to [m]. We define a function h00 : [n] ! [m� 1] as follows:

h00(i) =

(
h0(i) if h0(i) < h(n+ 1)

h0(i)� 1 otherwise
.

We prove that h00 is a bijection.

• Let i1 6= i2 2 [n]. If h0(i1), h0(i1) < h0(n+ 1) or h0(i1), h0(i1) � h0(n+ 1),
then h00(i1) 6= h00(i2) since h0(i1) 6= h0(i2). Otherwise, without loss of
generality we may assume that h0(i1) < h(n + 1) < h0(i2) but it implies
that h00(i1) = h0(i1) < h0(n+ 1)  h0(i2)� 1 = h00(i2).

• Let j 2 [m� 1]. We need to consider two cases.

1. Let j < h(n+ 1). There is i 2 [n+ 1] such that h0(i) = j since h0 is
a bijection (note that i 6= n+ 1). Thus h00(i) = j.

2. Otherwise, there is i 2 [n + 1] such that h0(i) = j + 1 since h0 is a
bijection (note that i 6= n+ 1). Thus h00(i) = j.

Since h00 is a bijection, the induction hypothesis implies that n = m � 1. As a
result, n+ 1 = m.

Using Theorem 8.2 we may derive a way to apply this theory in combinatircs;
we can use a bijection to prove that two sets have the same cardinality.

Theorem 8.4. Let X and Y be two finite sets such that there is a bijection f
from X to Y . Then |X| = |Y |.

Proof. Let |X| = n, and g : [n] ! X be a bijection. Note that f � g : [n] ! Y
is a bijection, hence |Y | = m.

Using this result we can make prove the following equality.

Corollary 8.1. Let X be a finite set of cardianlity n. Then 2X has the same
cardinality as {0, 1}|X|.

Proof. To prove this statement we need to construct a bijection from 2X to
{0, 1}|X|. Let |X| = n and f : [n] ! X be a bijection.

First we construct a bijection g1 from 2X to 2[n]: g1(Y ) = {f(x) : x 2 Y }
(Y 2 2X). It is easy to see that the function g�1

1 (Y ) =
�
f�1(x) : x 2 [n]

 

(Y 2 2[n]) is an inverse of g1, so g1 is indeed a bijection.
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Now we need to construct a bijection g2 from 2[n] to {0, 1}n: g2(Y ) =
(u1, . . . , un), where ui = 1 iff i 2 Y . It is clear that g�1

2 (u1, . . . , un) =
{i 2 [n] : ui = 1} is an inverse of g2 so g2 is indeed a bijection.

As a result, by Theorem 8.1, the function (g2 � g1) : 2X ! {0, 1}|X| is a
bijection.

Theorem 8.5. Let X, Y , Z be some sets There are bijctions from X⇥ (Y ⇥Z)
and (X ⇥ Y )⇥ Z to {(x, y, z) : x 2 X, y 2 Y, z 2 Z}.

Proof. Since the statement is symmetric, it is enough to prove that there is a
bijection f from X⇥(Y ⇥Z) to {(x, y, z) : x 2 X, y 2 Y, z 2 Z}. Define f such
that f(x, (y, z)) = (x, y, z). Clearly, f�1(x, y, z) = (x, (y, z)) is the inverse of f ,
so f is indeed a bijection.

8.2 Surjections and Injections

It is possible to note that the definition of the bijection consists of two part.
Both of these parts are interesting in their own regard, so they have their own
names.

Definition 8.3. Let f : X ! Y be a function.

• We say that f is a surjection iff every element of Y is an image of some
element of X. In other words,

8y 2 Y 9x 2 X f(x) = y.

• We say that f is an injection iff images of any two elements of X are
different. In other words,

8x1, x2 2 X f(x1) 6= f(x2).

Remark 8.1. Let f : X ! Y be an injection. Then g : X ! Imf such that
f(x) = g(x) is a bijection.

Exercise 8.2. Let R+ = {x 2 R : x > 0}. Is f : R+ ! R+ such that f(x) =
x+ 1 a surjection/injection?

Like in the case of the bijection we may use surjections and injections to
compare sizes of sets.

Theorem 8.6. Let X and Y be finite sets.

• If there is an injection from X to Y , then |X|  |Y |.

• If there is a surjection from X to Y , then |X| � |Y |.
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8.3 Generalized Commutative Operations

Using the notation of cardianlity we may generalize the summation operation
in the followin way:

P
i2S : P (i)

f(i) is equal to the sum of f(i) for all the i 2

{i 2 S : P (i)}; i.e.
X

i2S : P (i)

f(i) =
kX

j=1

f(ij),

where {i 2 S : P (i)} = {i1, . . . , ik}. More formally,

X

i2S : P (i)

f(i) =
kX

j=1

f(g(j)),

where k = | {i 2 S : P (i)} | and g : {i 2 S : P (i)} ! [k] is a bijection.

Theorem 8.7. The definition of
P

i2S:P (i)

f(i) is correct; i.e.
kP

i=1
f(g1(i)) =

kP
i=1

f(g2(i)) for any two bijections g1, g2 : {i 2 S : P (i)} ! [k].

Proof. Proof of this theorem consists of two parts. First, we prove that

kX

i=1

f(g(i)) =
kX

i=1

f(g(h(i))) (8.1)

for any bijections g : {i 2 S : P (i)} ! [k] and h : [k] ! [k].
To prove this statement, we introduce the notion of inversion. We say that

i, j 2 [k] for an inversion in h iff h(i) > h(j) and i < j. We denote by I(h) the
number of inversions in h; i.e. I(h) = | {(i, j) : i, j form an inversion in h} |.
It is easy to see that I(h) = 0 iff h(i) = i for any i 2 [k]. It is also clear that if
i, j form an inversion in h, then I(h) > I(h0), where

h0(x) =

8
><

>:

h(j) if x = i

h(i) if x = j

h(x) otherwise
.

We prove Equation 8.1 using the induction by I(h).

The base case: if I(h) = 0, then h is an identity function and g(i) = g(h(i)).
Hence, Equation 8.1 is true.

The induction step: by the induction hypothesis, if I(h0) < `, then

kX

i=1

f(g(i)) =
kX

i=1

f(g(h0(i)))
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for any bijection h0 : [k] ! [k]. Let us consider a bijection h : [k] ! [k]
such that I(h) = `. Define h0 : [k] ! [k] such that

h0(x) =

8
><

>:

h(j) if x = i

h(i) if x = j

h(x) otherwise
.

Note that by the induction hypothesis,

kX

i=1

f(g(i)) =
kX

i=1

f(g(h0(i)))

and it is clear that

kX

i=1

f(g(h0(i))) =
kX

i=1

f(g(h(i))).

As a result, Equation 8.1 is true.

Now we are ready to finish proof of the theorem. Consider g1, g2 : {i 2 S : P (i)} !
[k] and define h = g�1

1 � g2. Note that h : [k] ! [k] is a bijection and
g1(h(i)) = g2(i). Thus we proved that

kX

i=1

f(g1(i)) =
kX

i=1

f(g(h(i))) =
kX

i=1

f(g2(i)).

Similarly one may define a generalized union and intersection of sets. Let ⌦
and S be some sets, X : S ! 2⌦ and P (i) be a predicate. Then

[

i2S : P (i)

X(i) =
k[

i=1

X(g(i)

and
\

i2S : P (i)

X(i) =
k\

i=1

X(g(i),

where k = | {i 2 S : P (i)} | and g : {i 2 S : P (i)} ! [k] is a bijection.

Exercise 8.3. Show that the definitions of
S

i2S:P (i)

X(i) and
T

i2S:P (i)

X(i) are

correct, i.e. that the do not depend on the choice of g.
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End of The Chapter Exercises

8.4 Construct a bijection from {0, 1, 2}n to

{(A,B) : A,B ✓ [n] and A,B are disjoint} .

8.5 Construct a bijection from {0, 1}⇥ [n] to [2n].

8.6 Prove Theorem 8.6.


