
Chapter 3

Proofs by Induction

3.1 Simple Induction

youtu.be/jOnZTWGpX_I
The Induction Principle

Let us consider a simple problem: what is bigger
2n or n? In this chapter, we are going to study the
simplest way to prove that 2n > n for all positive
integers n. First, let us check that it is true for
small integers n.

n 1 2 3 4 5 6 7 8
2n 2 4 8 16 32 64 128 256

We may also note that 2n is growing faster than n,
so we expect that if 2n > n for small integers n,
then it is true for all positive integers n.

In order to prove this statement formally, we use the following principle.

Principle 3.1 (The Induction Principle). Let P (n) be some statement about a
positive integer n. Hence, P (n) is true for every positive integer n iff

base case: P (1) is true and

induction step: P (k) =) P (k + 1) is true for all positive integers k.

Let us prove now the statement using this principle. We define P (n) be the
statement that “2n > n”. P (1) is true since 21 > 1. Let us assume now that
2n > n. Note that 2n+1 = 2 · 2n > 2n � n+ 1. Hence, we proved the induction
step.

Exercise 3.1. Prove that (1 + x)n � 1 + nx for all positive integers n and real
numbers x � �1.

13

https://youtu.be/jOnZTWGpX_I
https://youtu.be/jOnZTWGpX_I

14 CHAPTER 3. PROOFS BY INDUCTION

3.2 Changing the Base Case

Let us consider functions n2 and 2n.

n 1 2 3 4 5 6 7 8
n2 1 4 9 16 25 36 49 64
2n 2 4 8 16 32 64 128 256

Note that 2n is greater than n2 starting from 5. But without some trick we can
not prove this using induction since for n = 3 it is not true!

The trick is to use the statement P (n) stating that (n + 4)2 < 2n+4. The
base case when n = 1 is true. Let us now prove the induction step. Assume
that P (k) is true i.e. (k + 4)2 < 2k+4. Note that 2(k + 4)2 < 2k+1+4 but
(k + 5)2 = k2 + 10k + 25  2k2 + 16k + 32 = 2(k + 4)2. Which implies that
2k+1+4 > (k + 5)2. So P (k + 1) is also true.

In order to avoid this strange +4 we may change the base case and use the
following argument.

Theorem 3.1. Let P (n) be some statement about an integer n. Hence, P (n)
is true for every integer n > n0 iff

base case: P (n0 + 1) is true and

induction step: P (k) =) P (k + 1) is true for all integers k > n0.

Using this generalized induction principle we may prove that 2n � n2 for
n � 4. The base case for n = 4 is true. The induction step is also true;
indeed let P (k) be true i.e. (k + 4)2 < 2k+4. Hence, 2(k + 4)2 < 2k+1+4 but
(k + 5)2 = k2 + 10k + 25  2k2 + 16k + 32 = 2(k + 4)2.

Let us now prove the theorem. Note that the proof is based on an idea
similar to the trick with +4, we just used.

Proof of Theorem 3.1.) If P (n) is true for any n > n0 it is also true for
n = n0+1 which implies the base case. Additionally, it true for n = k+1
so the induction step is also true.

(In this direction the proof is a bit harder. Let us consider a statement Q(n)
saying that P (n + n0) is true. Note that by the base case for P , Q(1) is
true; by the induction step for P we know that Q(n) implies P (n+1). As
a result, by the induction principle Q(n) is true for all positive integers n.
Which implies that P (n) is true for all integers n > n0.

3.3 Inductive Definitions

We may also define objects inductively. Let us consider the sum 1+ 2+ · · ·+ n
a line of dots indicating “and so on” which indicates the definition by induction.
In this case, a more precise notation is

Pn
i=1 i.

3.4. ANALYSIS OF ALGORITHMS WITH CYCLES 15

Definition 3.1. Let a(1), . . . , a(n), . . . be a sequence of integers. Then
Pn

i=1 a(i)
is defined inductively by the following statements:

•
P1

i=1 a(i) = a(1), and

•
Pk+1

i=1 a(i) =
Pk

i=1 a(i) + a(k + 1).

Let us prove that
Pn

i=1 i =
n(n+1)

2 . Note that by definition
P1

i=1 i = 1 and
1(1+1)

2 = 1; hence, the base case holds. Assume that
Pn

i=1 i =
n(n+1)

2 . Note that
Pn+1

i=1 i =
Pn

i=1 i + (n + 1) and by the induction hypothesis
Pn

i=1 i =
n(n+1)

2 .
Hence,

Pn+1
i=1 i = n(n+1)

2 + (n+ 1) = (n+1)(n+2)
2 .

Exercise 3.2. Prove that
Pn

i=1 2
i = 2n+1 � 2.

3.4 Analysis of Algorithms with Cycles

Induction is very useful for analysing algorithms using cycles. Let us extend the
example we considered in Section 1.3 on page 6.

Let us consider the following algorithm. We prove that it is working correctly.

Algorithm 2 The algorithm that finds the maximum element of a1, . . . , an.
1: function Max(a1, . . . , an)
2: r a1
3: for i from 2 to n do

4: if ai > r then

5: r ai
6: end if

7: end for

8: return r
9: end function

First, we need to define r1, . . . , rn the value of r during the execution of the

algorithm. It is easy to see that r1 = a1 and ri+1 =

(
ri if ri > ai+1

ai+1 otherwise
.

Secondly, we prove by induction that ri is the maximum of a1, . . . , ai. It is
clear that the base case for i = 1 is true. Let us prove the induction step from
k to k + 1. By the induction hypothesis, rk is the maximum of a1, . . . , ak. We
may consider two following cases.

• If rk > ak+1, then rk+1 = rk is the maximum of a1, . . . , ak+1 since rk is
the maximum of a1, . . . , ak.

• Otherwise, ak+1 is greater than or equal to a1, . . . , ak, hence, rk+1 = ak+1.

Exercise 3.3. Show that line 6 in the following sorting algorithm executes
n(n+1)

2 times.

16 CHAPTER 3. PROOFS BY INDUCTION

Algorithm 3 The algorithm is selection sort, it sorts a1, . . . , an.
1: function SelectionSort(a1, . . . , an)
2: for i from 1 to n do

3: r ai
4: ` i
5: for j from i to n do

6: if aj > r then

7: r aj
8: ` j
9: end if

10: end for

11: Swap ai and a`.
12: end for

13: end function

3.5 Strong Induction

Sometimes P (k) is not enough to prove P (k+1) and we need all the statements
P (1), . . . , P (k). In this case we may use the following induction principle.

Theorem 3.2 (The Strong Induction Principle). Let P (n) be some statement
about positive integer n. Hence, P (n) is true for every integer n > n0 iff

base case: P (n0 + 1) is true and

induction step: If P (n0 + 1), . . . , P (n0 + k) are true, then P (n0 + k + 1) is
also true for all positive integers k.

Before we prove this theorem let us prove some properties of Fibonacci num-
bers using this theorem. The Fibonacci numbers are defined as follows: f0 = 0,
f1 = 1, and fk = fk�1 + fk�2 for k � 2 (note that they are also defined using
strong induction since we use not only fk�1 to define fk).

Theorem 3.3 (The Binet formula). The Fibonacci numbers are given by the
following formula

fn =
↵n � �n

p
5

,

where ↵ = 1+
p
5

2 and � = 1�
p
5

2 .

Proof. We use the strong induction principle to prove this statement with n0 =

�1. Let us first prove the base case, (↵0��0)p
5

= 0 = f0. We also need to prove
the induction step.

• If k = 1, then (↵1��1)p
5

= 1 = f1.

3.6. RECURSIVE DEFINITIONS 17

• Otherwise, by the induction hypothesis, fk = ↵k��k
p
5

and fk�1 = ↵k�1��k�1
p
5

.
By the definition of the Fibonacci numbers fk+1 = fk + fk�1. Hence,

fk+1 =
↵k � �k

p
5

+
↵k�1 � �k�1

p
5

.

Note that it is enough to show that

↵k+1 � �k+1

p
5

=
↵k � �k

p
5

+
↵k�1 � �k�1

p
5

. (3.1)

Note that it is the same as

↵k+1 � ↵k � ↵k�1

p
5

=
�k+1 � �k � �k�1

p
5

.

Additionally, note that ↵ and � are roots of the equation x2 � x� 1 = 0.
Hence, ↵k+1�↵k�↵k�1 = ↵k�1(↵2�↵�1) = 0 and �k+1��k��k�1 =
�k�1(�2 � � � 1) = 0. Which implies equality (3.1).

Now we are ready to prove the strong induction principle.

Proof of Theorem 3.2. It is easy to see that if P (n) is true for all n > n0, then
the base case and the induction steps are true. Let us prove that if the base
case and the induction step are true, then P (n) is true for all n > n0.

Let Q(k) be the statement that P (n0 + 1), . . . , P (n0 + k) are true. Note
that Q(1) is true by the base case for P . Additionally, note that if Q(k) is true,
then Q(k+1) is also true, by the induction step for P . Hence, by the induction
principle, Q(k) is true for all positive integers k. Which implies that P (n0 + k)
is true for all positive integers k.

3.6 Recursive Definitions

Sometimes you wish to define objects using objects of the same form like in the
case of inductive definitions but you do not know how to enumerate them using
an integer parameter.

One example of such a situation is the definition of an arithmetic formula.

base case: xi is an arithmetic formula on the variables x1, . . . , xn for all i; if
c is a real number, then c is also an arithmetic formula on the variables
x1, . . . , xn.

recursion step: If P and Q are arithmetic formulas on the variables x1, . . . ,
xn, then (P + Q) and P · Q are arithmetic formulas on the variables x1,
. . . , xn.

18 CHAPTER 3. PROOFS BY INDUCTION

Note that this definition implicitly states that any other expressions are not
arithmetic formulas.

We can define recursively the value of such a formula. Let v1, . . . , vn be
some integers.

base cases: xi

��
x1=v1,...,xn=vn

= vi; in other words, the value of the arithmetic
formula xi is equal to vi when x1 = v1, . . . , xn = vn; if c is a real number,
then c|x1=v1,...,xn=vn = c.

recursion steps: If P and Q are arithmetic formulas on the variables x1, . . . ,
xn, then

(P +Q)
��
x1=v1,...,xn=vn

= P
��
x1=v1,...,xn=vn

+Q
��
x1=v1,...,xn=vn

and

(P ·Q)
��
x1=v1,...,xn=vn

= P
��
x1=v1,...,xn=vn

·Q
��
x1=v1,...,xn=vn

.

For example, ((x1+x2) ·x3) is clearly an arithmetic formula on the variables
x1, . . . , xn. One may expect the value of this formula with x1 = 1, x2 = 0, and
x3 = �1 be equal to �1, let us check:

• Note that
x1

��
x1=1,x2=0,x3=�1

= 1,

x2

��
x1=1,x2=0,x3=�1

= 0, and
x3

��
x1=1,x2=0,x3=�1

= �1.

• Hence,
(x1 + x2)

��
x1=1,x2=0,x3=�1

= 1 + 0 = 1.

• Finally,
((x1 + x2) · x3)

��
x1=1,x2=0,x3=�1

= 1 ·�1 = �1.

A special case of induction which called structural induction is the easiest
way to prove properties of recursively defined objects. The idea of this is similar
to the idea of strong induction:

• first, we prove the statement for the base case,

• after that we prove the induction step, using the assumption that the
statement is true for all the substructures (e.g. subformulas in the previous
definition).

To illustrate this method, we prove the following theorem.

Theorem 3.4. For any arithmetic formula A on x, there is a polynomial p
such that p(v) = A

��
x=v

for any real value v.

3.7. ANALYSIS OF RECURSIVE ALGORITHMS 19

Proof. base cases: If A = xi, then consider the polynomial p(x) = x; it is
easy to see that A

��
x=v

= v = p(v). If A = c where c is a real number,
then consider the constant polynomial p(x) = c; it is easy to note that
A
��
x=v

= c = p(v).

induction step: We need to consider two cases. Consider the case when A =
B1+B2. By the induction hypothesis, there are polynomials q1 and q2 such
that B1

��
x=v

= q1(v) and B2

��
x=v

= q2(v) for all real numbers v. We define
p(x) = q1(x) + q2(x) (it is a polynomial since sum of two polynomials is a
polynomial). It is obvious that A

��
x=v

= B1

��
x=v

+B2

��
x=v

= q1(v)+q2(v) =
p(v).
Another case is A = B1 · B2. Again, by the induction hypothesis, there
are polynomials q1 and q2 such that B1

��
x=v

= q1(v) and B2

��
x=v

= q2(v)
for all real numbers v. We define p(x) = q1(x) · q2(x) (it is a polynomial
since product of two polynomials is a polynomial). It is obvious that
A
��
x=v

= B1

��
x=v

·B2

��
x=v

= q1(v) · q2(v) = p(v).

Exercise 3.4. • Define arithmetic formulas with division and define their
value (make sure that you handled divisions by 0).

• Show that for any arithmetic formula with division A on x, there are
polynomials p and q such that p(v)

q(v) = A
��
x=v

or A
��
x=v

is not defined for
any real value v.

3.7 Analysis of Recursive Algorithms

To illustrate the power of recursive definitions and strong induction, let us an-
alyze Algorithm 4. We prove that number of comparisons of this algorithm
is bounded by 6 + 2 log2(n). First step of the proof is to denote the worst
number of comparisons when we run the algorithm on the list of length n
by C(n). It is easy to see that C(n) = n for n  5. Additionally, C(n) 
1 + max(C(

⌅
n
2

⇧
), C(n �

⌅
n
2

⇧
)) for n > 5. As we mentioned we prove that

C(n)  6 + 2 log2(n), we prove it by induction. The base case is clear; let us
now prove the induction step. By the induction hypothesis,

C(
jn
2

k
)  6 + 2 log2(

jn
2

k
)

and
C(n�

jn
2

k
)  6 + 2 log2(n�

jn
2

k
).

Since
⌅
n
2

⇧
 n

2 and n�
⌅
n
2

⇧
 n

2 + 1, C(n)  1 + 2 log2(
n
2 + 1). However,

1 + 6 + 2 log2

⇣n
2
+ 1

⌘
 6 + 2 log2

✓
np
2
+
p
2

◆
 6 + 2 log2(n)

for n � 5. As a result, we proved the induction step.

20 CHAPTER 3. PROOFS BY INDUCTION

Algorithm 4 The binary search algorithm that finds an element e in the sorted
list a1, . . . , an.
1: function BinarySearch(e, a1, . . . , an)
2: if n  5 then

3: for i from 1 to n do

4: if ai = e then

5: return i
6: end if

7: end for

8: else

9: `
⌅
n
2

⇧

10: if a`  e then

11: BinarySearch(e, a1, . . . , a`)
12: else

13: BinarySearch(e, a`+1, . . . , an)
14: end if

15: end if

16: end function

End of The Chapter Exercises

3.5 Show that there does not exist the largest integer.

3.6 Show that for any positive integer n, n2 + n is even.

3.7 Show that for any positive integer n, 3 divises n3 + 2n.

3.8 Show that for any integer n � 10, n3  2n.

3.9 Show that for any positive integer n,
Pn

i=0 x
i = 1�xn+1

1�x .

3.10 Show that for any matrix A 2 Rm⇥n (n > m) there is a nonzero vector
x 2 Rn such that Ax = 0.

3.11 Show that all the elements of {0, 1}n (Binary strings) may be ordered
such that every successive strings in this order are different only in one
character. (For example, for n = 2 the order may be 00, 01, 11, 10.)

3.12 Let a0 = 2, a1 = 5, and an = 5an�1 � 6an�2 for all integers n � 2. Show
that an = 3n + 2n for all integers n � 0.

3.13 Show that
Pn

i=1 i
2 = n(n+1)(2n+1)

6 for all integers n � 1.

3.14 Show that
nP

i=1

1
i(i+1) =

n
n+1 for all integers n � 1.

3.15 Show that
nP

i=1

1
i2  2� 1

n for all integers n � 1.

3.7. ANALYSIS OF RECURSIVE ALGORITHMS 21

3.16 Show that
Pn

i=1(2i� 1) = n2 for any positive integer n.

3.17 Prove that
Pn

i=1
1

i(i+1) =
n

n+1 for any positive integer n.

3.18 Prove that
nP

i=2
(i+ 1)2i = n2n+1 for all integers n > 2.

3.19 Let a1, . . . , an be a sequence of real numbers. We define inductivelyQn
i=k ai as follows:

•
Q1

i=1 ai = a1 and

•
Qk+1

i=1 ai =
⇣Qk

i=1 ai
⌘
· ak+1.

Prove that
Qn�1

i=1

⇣
1� 1

(i+1)2

⌘
= n+1

2n for all integers n > 1.

3.20 Let f0 = 1, f1 = 1, and fn+2 = fn+1 + fn for all integers n � 0. Show
that fn �

�
3
2

�n�2.

3.21 Show that fn+m = fn�1fm�1 + fnfm.

3.22 Show that two arithmetic formulas (x1 + x2) · x3 and x1 · x3 + x2 · x3 on
the variables x1, x2, and x3 have the same values.

3.23 We say that L is a list of powers of x iff

• either L = xk for some positive integer k or
• L = (xk, L0) where L0 is a list of powers of x and k is a positive

integer.

Let L be a list of powers of x. We say that the sum of L with x = v
denoted by

P
L
��
x=v

• is equal to xk whether L = xk and
• is equal to xk +

P
L0
��
x=v

whether L = (xk, L0).

Prove that for any list L of powers of x there is a polynomial such thatP
L
��
x=v

= p(v) for all real numbers v.

3.24 Let us define n! as follows: 1! = 1 and n! = (n�1)! ·n. Show that n! � 2n

for any n � 4.

3.25 Show that
+1R

0
xne�x dx = n! for all n � 0.

3.26 Prove that
nP

i=1
(i+ 1)2i = n2n+1 for all integers n � 1.

3.27 Show that
Pn

k=1 k · k! = (n+ 1)!� 1.

22 CHAPTER 3. PROOFS BY INDUCTION

