
Chapter 2

Proofs by Contradiction

2.1 Proving Negative Statements
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Proofs by Contradiction

The direct method is not very convenient when we
need to prove a negation of some statement.

For example, we may try to prove that 78n +
102m = 11 does not have integer solutions. It is not
clear how to prove it directly since we can not con-
sider all possible n and m. Hence, we need another
approach. Let us assume that such a solution n,m
exists. Note that 78n+102m is even, but 11 is odd.
In other words, an odd number is equal to an even
number, it is impossible. Thus, the assumption was
false.

Let us consider a more useful example, let us prove that if p2 is even, then
p is also even (p is an integer). Assume the opposite i.e. that p2 is even but p
is not. Let p = 2b+ 11. Note that p2 = (2b+ 1)2 = 2(2b2 + 2b) + 1. Hence, p2
is odd which contradicts to the assumption that p2 is even.

Using this idea we may prove much more complicated results e.g. one may
show that

p
2 is irrational. For the sake of contradiction, let us assume that it

is not true. In other words there are p and q such that
p
2 = p

q and p
q is an

irreducible fraction.
Note that

p
2q = p, so 2q2 = p2. Which implies that p is even and 4 divides

p2. Therefore 4 divides 2q2 and q is also even. As a result, we get a contradiction
with the assumption that p

q is an irreducible fraction.

1
Note that we use here the statement that an integer n is not even iff it is odd, which,

formally speaking, should be proven.
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Template for proving a statement by contradiction.

Assume, for the sake of contradiction, that the statement is false. Then
present some argument that leads to a contradiction. Hence, the as-
sumption is false and the statement is true.

Exercise 2.1. Show that
p
3 is irrational.

2.2 Proving Implications by Contradiction

This method works especially well when we need to prove an implication. Since
the implication A =) B is false only when A is true but B is false. Hence,
you need to derive a contradiction from the fact that A is true and B is false.

We have already seen such examples in the previous section, we proved that
p2 is even implies p is even for any integer p. Let us consider another example.
Let a and b be reals such that a > b. We need to show that (ac < bc) =) c < 0.
So we may assume that ac < bc but c � 0. By the multiplicativity of the
inequalities we know that if (a > b) and c > 0, then ac > bc which contradicts
to ac < bc.

A special case of such a proof is when we need to prove the implication
A =) B, assume that B is false and derive that A is false which contradicts
to A (such proofs are called proofs by contraposition); note that the previous
proof is a proof of this form.

2.3 Proof of “OR” Statements

Another important case is when we need to prove that at least one of two
statements is true. For example, let us prove that ab = 0 iff a = 0 or b = 0. We
start from the implication from the right to the left. Since if a = 0, then ab = 0
and the same is true for b = 0 this implication is obvious.

The second part of the proof is the proof by contradiction. Assume ab = 0,
a 6= 0, and b 6= 0. Note that b = ab

a = 0, hence b = 0 which is a contradiction to
the assumption.

End of The Chapter Exercises

2.2 Prove that if n2 is odd, then n is odd.

2.3 In Euclidean (standard) geometry, prove: If two lines share a common
perpendicular, then the lines are parallel.

2.4 Let us consider four-lines geometry, it is a theory with undefined terms:
point, line, is on, and axioms:

1. there exist exactly four lines,
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2. any two distinct lines have exactly one point on both of them, and
3. each point is on exactly two lines.

Show that every line has exactly three points on it.

2.5 Let us consider group theory, it is a theory with undefined terms: group-
element and times (if a and b are group elements, we denote a times b by
a · b), and axioms:

1. (a · b) · c = a · (b · c) for every group-elements a, b, and c;
2. there is a unique group-element e such that e · a = a = a · e for

every group-element a (we say that such an element is the identity
element);

3. for every group-element a there is a group-element b such that a·b = e,
where e is the identity element;

4. for every group-element a there is a group-element b such that b·a = e,
where e is the identity element.

Let e be the identity element. Show the following statements

• if b0 · a = b1 · a = e, then b0 = b1, for every group-elements a, b0, and
b1.

• if a · b0 = a · b1 = e, then b0 = b1, for every group-elements a, b0, and
b1.

• if a · b0 = b1 · a = e, then b0 = b1, for every group-elements a, b0, and
b1.

2.6 Let us consider three-points geometry, it is a theory with undefined terms:
point, line, is on, and axioms:

1. There exist exactly three points.
2. Two distinct points are on exactly one line.
3. Not all the three points are collinear i.e. they do not lay on the same

line.
4. Two distinct lines are on at least one point i.e. there is at least one

point such that it is on both lines.

Show that there are exactly three lines.

2.7 Show that there are irrational numbers a and b such that ab is rational.

2.8 Show that there does not exist the largest integer.
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