
Chapter 1

Proofs

1.1 Direct Proofs

youtu.be/eJD0gGqveIE
What is a Mathematical Proof

We start the discussion of the proofs in mathemat-
ics from an example of a proof in “everyday” life.
Assume that we know that the following statements
are true.

1. If a salmon has fins and scales it is kosher,

2. if a salmon has scales it has fins,

3. any salmon has scales.

Using these facts we may conclude that any salmon
is kosher; indeed, any salmon has scales by the
third statement, hence, by the second statement

any salmon has fins, finally, by the first statement any salmon is kosher since it
has fins and scales.

One may notice that this explanation is a sequence of conclusions such that
each of them is true because the previous one is true. Mathematical proof is
also a sequence of statements such that every statement is true if the previous
statement is true. If P and Q are some statements and Q is always true when P
is true, then we say that P implies Q. We denote the statement that P implies
Q by P =) Q.

In order to define the implication formally let us consider the following table.

P Q P =) Q
T T T
T F F
F T T
F F T

Let P and Q be some statements. Then this table says that if P and Q are
both false, then P =) Q is true etc.
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Exercise 1.1. Let n be an integer.

1. Is it always true that “n2 is positive” implies “n is not equal to 0”?

2. Is it always true that “n2 � n� 2 is equal to 0” implies “n is equal to 2”?

youtu.be/nBjJi6aTk2M
What We Know and How to

Find a Proof

In the example we gave at the beginning of the
section we used some known facts. But what does
it mean to know something? In math we typically
say that we know a statement if we can prove it.
But in order to prove this statement we need to
know something again, which is a problem! In or-
der to solve it, mathematicians introduced the no-
tion of an axiom. An axiom is a statement that is
believed to be true and when we prove a statement
we prove it under the assumption that these axioms
are true1.

For example, we may consider axioms of in-
equalities for real numbers.

1. Let a, b 2 R. Only one of the following is true:

• a < b,
• b < a, or
• a = b.

2. Let a, b, c 2 R. Then a < b iff a + c < b + c (iff is an abbreviation for “if
and only if”).

3. Let a, b, c 2 R. Then a < b iff ac < bc provided that c > 0 and a < b iff
ac > bc if c < 0.

4. Let a, b, c 2 R. If a < b and b < c, then a < c.

Let us now try to prove something using these axioms, we prove that if a > 0,
then a2 > 0. Note that a > 0, hence, by the third axiom a2 > 0.

Similarly, we may prove that if a < 0, then a2 > 0. And combining these
two statements together we may prove that if a 6= 0, then a2 > 0.

Such a way of constructing proof is called direct proofs.

Exercise 1.2. Axiomatic system for a four-point geometry.
Undefined terms: point, line, is on.
Axioms:

• For every pair of distinct points x and y, there is a unique line ` such that
x is on l and y is on l.

• Given a line ` and a point x that is not on `, there is a unique line m such
that x is on m and no point on ` is also on m.

1
Note that in different parts of math axioms may be different

https://youtu.be/nBjJi6aTk2M
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• There are exactly four points.

• It is impossible for three points to be on the same line.

Prove that there are at least two distinct lines.

Let n and m be some integers. Using direct proofs we may prove the following
two statements.

• if n is even, then nm is also even2,

• if n is even and m is even, then n+m is also even.

We start from proving the first statement. There is an integer k such that
n = 2k since n is even. As a result, nm = 2(nk) so nm is even.

Now we prove the second statement. Since n and m are even there are k
and ` such that n = 2k and m = 2`. Hence, n+m = 2(k+ `) so n+m is even.

1.2 Constructing Proofs Backwards

However, sometimes it is not easy to find the proof. In this case one of the
possible methods to deal with this problem is to try to prove starting from the
end.

For example, we may consider the statement (a+b)2 = a2+2ba+b2. Imagine,
for a second, that you have not learned about axioms. In this case you would
write something like this:

(a+ b)2 = (a+ b) · (a+ b) =

a(a+ b) + b(a+ b) =

a2 + ab+ ba+ b2 = a2 + 2ba+ b2.

Let us try to prove it completely formally using the following axioms.

1. Let a, b, and c be reals. If a = b and b = c, then a = c.

2. Let a, b, and c be reals. If a = b, then a+ c = b+ c and c+ a = c+ b.

3. Let a, b, and c be reals. Then a(b+ c) = ab+ ac.

4. Let a and b be reals. Then ab = ba.

5. Let a and b be reals. Then a+ b = b+ a.

6. Let a be a real number. Then a2 = a · a and a · a = a2.

7. Let a be a real number. Then a+ a = 2a.
2
A number n is even if there is an integer k such that n = 2k.
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So the formal proof of the statement (a + b)2 = a2 + 2ab + b2 is as follows.
First note that (a + b)2 = (a + b) · (a + b) (by axiom 6), hence, by axiom 1,
it is enough to show that (a + b) · (a + b) = a2 + 2ab + b2. By axiom 3,
(a+b) ·(a+b) = (a+b) ·a+(a+b) ·b. Axiom 4 implies that (a+b) ·a = a ·(a+b)
and (a+ b) · b = b · (a+ b) Hence, by axioms 1 and 2 applied twice

a · (a+ b) + b · (a+ b) = (a+ b) · a+ b · (a+ b) = (a+ b) · a+ (a+ b) · b.

As a result,

(a+b)·(a+b) = (a+b)·a+(a+b)·b = a·(a+b)+b·(a+b) = a·a+a·b+b·a+b·b;

so by axiom 1, it is enough to show that a · a+ a · b+ b · a+ b · b = a2 +2ab+ b2.
Additionally, by axiom 6, a · a = a2 and b · b = b2. Hence, by axiom 2, it is
enough to show that a2+a ·b+b ·a+b2 = a2+2ab+b2. By axiom 4, a ·b = b ·a,
hence, by axiom 2, a·b+b·a = b·a+b·a. Therefore by axiom 7, a·b+b·a = 2b·a.
Finally, by axiom 2, a · b + b · a + a2 + b2 = 2b · a + a2 + b2 and by axiom 5,
a · b+ b · a+ a2 + b2 = a2 + a · b+ b · a+ b2 and 2b · a+ a2 + b2 = a2 +2b · a+ b2.
Which finishes the proof by axiom 1.

1.3 Analysis of Simple Algorithms

We can use this knowledge to analyze simple algorithms. For example, let us
consider the following algorithm. Let us prove that it is correct i.e. it returns

Algorithm 1 The algorithm that finds the maximum element of a, b, c.
1: function Max(a, b, c)
2: r  a
3: if b > r then

4: r  b
5: end if

6: if c > r then

7: r  c
8: end if

9: return r
10: end function

the maximum of a, b, and c. We need to consider the following cases.

• If the maximum is equal to a. In this case, at line 2, we set r = a, at line 3
the inequality b > r is false (since a = r is the maximum) and at line 6
the inequality c > r is also false (since a = r is the maximum). Hence, we
do not change the value of r after line 2 and the returned value is a.

• If the maximum is equal to b. We set r = a at line 2. The inequality b > r
at line 3 is true (since b is the maximum) and we set r to be equal to b.
So at line 6, the inequality c > r is false (since b = r is the maximum).
Hence, the returned value is b.
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• If the maximum is equal to c. We set r = a at line 2. If the inequality
b > r is true at line 3 we set r to be equal to b. So at line 6 the inequality
c > r is true (since c is the maximum). Hence, we set r being equal to c
and the returned value is c.

1.4 Proofs in Real-life Mathematics

In this chapter we explicitly used axioms to prove statements. However, it leads
us to really long and hard to understand proofs (the last example in the previous
section is a good example of this phenomenon). Because of this mathematicians
tend to skip steps in the proofs when they believe that they are clear. This is
the reason why it is arduous to read mathematical texts and it is very different
from reading non-mathematical books. A problem that arises because of this
tendency is that some mistakes may happen if we skip way too many steps.
In the last two centuries there were several attempts to solve this issue, one
approach to this we are going to discuss in the second part of this book.

End of The Chapter Exercises

1.3 Using the axioms of inequalities show that if a is a non-zero real number,
then a2 > 0.

1.4 Using the axioms of inequalities prove that for all real numbers a, b, and
c,

bc+ ac+ ab  a2 + b2 + c2.

1.5 Prove that for all integers a, b, and c, If a divides b and b divides c, then
a divides c. Recall that an integer m divides an integer n if there is an
integer k such that mk = n.

1.6 Show that square of an even integer is even.

1.7 Prove that 0 divides an integer a iff a = 0.

1.8 Using the axioms of inequalities, show that if a > 0, b, and c are real
numbers, then b � c implies that ab � ac.

1.9 Using the axioms of inequalities, show that if a, b < 0 are real numbers,
then a  b implies that a2 � b2.
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