Name: \qquad

Pid: \qquad

1. Find P - and N -positions in the misére subtraction game with the subtrucation set $\{1,3,5\}$.

Solution:

2. Two players are playing the following combinatorial game.

- On each turn they put a chess knight on a board 9×9 so that it is not attacked by previously placed knights.
- The take turns and the player that cannot make a move loses.

Determine who has a winning strategy.

Solution:

3. Two players are playing the following combinatorial game with several piles of chips.

- They take turns;
- on each turn the current player splits one pile into two non-empty piles of chips;
- the player that cannot make a move loses.

Find the value of the Sprague-Grundy function for positions with one pile consisting of n chips.

Solution:

4. We say that $\bar{L}=(\Omega, \operatorname{Pr})$ is a ranomized B -decision list iff Ω is a finite set of B -decision lists and Pr is a probability distribution on Ω.
We define $\ell(L, x)$ recursively:

- If L is an integer, then $\ell(L, x)=0$.
- If $L=\left(f, y, L^{\prime}\right)$, then

$$
\ell(L, x)= \begin{cases}1 & \text { if } f(x)=1 \\ 1+\ell\left(L^{\prime}, x\right) & \text { if } f(x)=0\end{cases}
$$

Let $f:[1000] \rightarrow \mathbb{Z}$; we denote by $\operatorname{RL}(f)=\min _{\bar{L}} \max _{x \in[1000]} \mathbb{E}_{L \sim \bar{L}} \ell(L, x)$.
Show that $\mathrm{RL}(\mathrm{id}) \geq 500$, where id $:[1000] \rightarrow \mathbb{Z}$ and $\operatorname{id}(x)=x$.

Solution:

