Name:

Pid: _____

1. Find P- and N-positions in the misére subtraction game with the subtrucation set $\{1, 3, 5\}$.

- 2. Two players are playing the following combinatorial game.
 - On each turn they put a chess knight on a board 9×9 so that it is not attacked by previously placed knights.
 - The take turns and the player that cannot make a move loses.

Determine who has a winning strategy.

3. Two players are playing the following combinatorial game with several piles of chips.

- They take turns;
- on each turn the current player splits one pile into two non-empty piles of chips;
- the player that cannot make a move loses.

Find the value of the Sprague–Grundy function for positions with one pile consisting of n chips.

4. We say that $\overline{L} = (\Omega, \Pr)$ is a ranomized B-decision list iff Ω is a finite set of B-decision lists and \Pr is a probability distribution on Ω .

We define $\ell(L, x)$ recursively:

- If L is an integer, then $\ell(L, x) = 0$.
- If L = (f, y, L'), then

$$\ell(L, x) = \begin{cases} 1 & \text{if } f(x) = 1\\ 1 + \ell(L', x) & \text{if } f(x) = 0 \end{cases}$$

Let $f : [1000] \to \mathbb{Z}$; we denote by $\operatorname{RL}(f) = \min_{\bar{L}} \max_{x \in [1000]} \mathbb{E}_{L \sim \bar{L}} \ell(L, x)$. Show that $\operatorname{RL}(\operatorname{id}) \geq 500$, where $\operatorname{id} : [1000] \to \mathbb{Z}$ and $\operatorname{id}(x) = x$.