Name:

Pid: _____

1. (10 points) In the subtraction game with *two* piles where players may subtract 1, 2 or 5 chips on their turn, identify the N- and P-positions. (Please do not forget to prove correctness of your asnwer.)

Solution: Let us prove that

 $g(x) = \begin{cases} 0 & \text{if } x \equiv 0 \pmod{3} \\ 1 & \text{if } x \equiv 1 \pmod{3} \\ 2 & \text{if } x \equiv 2 \pmod{3} \end{cases}$

is the Sprague–Grundy function for the subtraction game with one pile.

We prove the statement using induction by x. First we need to prove the base cases for $x \leq 4$.

- It is clear that g(0) = 0 since 0 is a terminal position.
- From 1 there is only one move to 0; hence, $g(1) = \max\{0\} = 1$.
- From 2 there are two moves to 0 and to 1; hence, $g(2) = \max\{0, 1\} = 2$.
- From 3 there are two moves to 1 and to 2; hence, $g(3) = \max\{1, 2\} = 0$.
- From 4 there are two moves to 0 and to 1; hence, $g(4) = \max\{2, 0\} = 1$.

Assume that the statement is true for all y < x. Note that there are three moves from x: to x - 1, to x - 2, and to x - 5. It is easy to see that $x - 5 \equiv x - 2 \pmod{3}$; hence $g(x) = \max\{g(x-1), g(x-2)\}$. Therefore, by considering three cases of the reminder of $x \mod 3$ we can prove the statement.

2. (10 points) Alice and Bob have several piles of chips. On each turn they can either remove 1 or 2 chips from one pile, or split a pile into two *nonempty* piles. Players take turns and a player that cannot make a move loses. Find the value of the Sprague–Grundy function for positions with one pile made of *n* chips. (Please do not forget to prove correctness of your asnwer.)

Solution: Let g be the Sprague–Grundy function for this game. It is clear that the position (x, y) (the position with two piles having x and y chips, respectively) is equivalent to the position (x, y) in the same of this game with itself. Hence, $g(x, y) = g(x) \oplus g(y)$.

As a result,

$$g(x)\max(\{g(x-1), g(x-2)\} \cup \{g(y) \oplus g(z) : y, z \ge 1, y+z=x\})$$

for $x \ge 2$ and g(0) = 1 and g(1) = 1.

Let us prove that

$$g(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \equiv 1 \pmod{4} \\ 2 & \text{if } x \equiv 2 \pmod{4} \\ 0 & \text{if } x \equiv 3 \pmod{4} \\ 3 & \text{if } x \equiv 0 \pmod{4} \end{cases}$$

The base case for $x \leq 4$ is clear.

- By the above formula, $g(2) = \max\{g(0), g(1), g(1) \oplus g(1)\} = \max\{0, 1\} = 2$.
- By the above formula, $g(3) = \max\{g(1), g(2), g(1) \oplus g(2)\} = \max\{1, 2, 3\} = 0.$
- By the above formula, $g(4) = \max\{g(2), g(3), g(1) \oplus g(3), g(2) \oplus g(2)\} = \max\{2, 0, 1, 0\} = 3$.

Let us now prove the induction step. Assume the statement is true for all y < x.

- Let $x \equiv 1 \pmod{4}$ Assume y + z = x and $y, z \ge 1$. We calim that $g(y) \oplus g(z) \ne 1$. Indeed, the only pairs of numbers whose xor gives 1 among 0, 1, 2, 3 are 0 and 1, and 2 and 3.
 - If g(y) = 0 and g(z) = 1, then $y \equiv 3 \pmod{4}$ and $z \equiv 1 \pmod{4}$. Which implies that $y + z \equiv 0 \pmod{4}$ and this contradicts to the assumption.
 - If g(y) = 2 and g(z) = 3, then $y \equiv 2 \pmod{4}$ and $z \equiv 0 \pmod{4}$. Which implies that $y + z \equiv 2 \pmod{4}$ and this contradicts to the assumption.

However, g(x - 1) = 3 and g(x - 2) = 0. Hence, g(x) = 1.

- Let $x \equiv 2 \pmod{4}$ Assume y + z = x and $y, z \ge 1$. We calim that $g(y) \oplus g(z) \ne 2$. Indeed, the only pairs of numbers whose xor gives 2 among 0, 1, 2, 3 are 0 and 2, and 1 and 3.
 - If g(y) = 0 and g(z) = 2, then $y \equiv 3 \pmod{4}$ and $z \equiv 2 \pmod{4}$. Which implies that $y + z \equiv 1 \pmod{4}$ and this contradicts to the assumption.
 - If g(y) = 1 and g(z) = 3, then $y \equiv 1 \pmod{4}$ and $z \equiv 0 \pmod{4}$. Which implies that $y + z \equiv 1 \pmod{4}$ and this contradicts to the assumption.

However, g(x-1) = 1, g(x-2) = 3, and $g(x-1) \oplus g(1) = 0$. Hence, g(x) = 2.

• Let $x \equiv 3 \pmod{4}$ Assume y + z = x and $y, z \ge 1$. We calim that $g(y) \oplus g(z) \ne 0$. Indeed, the only pairs of numbers whose xor gives 3 among 0, 1, 2, 3 are the equal pairs

- If g(y) = 0 and g(z) = 0, then $y \equiv 3 \pmod{4}$ and $z \equiv 3 \pmod{4}$. Which implies that $y + z \equiv 2 \pmod{4}$ and this contradicts to the assumption.
- If g(y) = 1 and g(z) = 1, then $y \equiv 1 \pmod{4}$ and $z \equiv 1 \pmod{4}$. Which implies that $y + z \equiv 2 \pmod{4}$ and this contradicts to the assumption.
- If g(y) = 2 and g(z) = 2, then $y \equiv 2 \pmod{4}$ and $z \equiv 2 \pmod{4}$. Which implies that $y + z \equiv 0 \pmod{4}$ and this contradicts to the assumption.
- If g(y) = 3 and g(z) = 3, then $y \equiv 0 \pmod{4}$ and $z \equiv 0 \pmod{4}$. Which implies that $y + z \equiv 0 \pmod{4}$ and this contradicts to the assumption.

However, g(x-1) = 2, g(x-2) = 1.

• Let $x \equiv 0 \pmod{4}$ Assume y + z = x and $y, z \ge 1$. We calim that $g(y) \oplus g(z) \ne 3$. Indeed, xor of two numbers among 0, 1, 2, 3 is at most 3. However, g(x - 1) = 0, g(x - 2) = 2, and $g(x - 1) \oplus g(1) = 1$. Hence, g(x) = 3.