Name: \qquad

Pid: \qquad

1. (10 points) In the subtraction game with two piles where players may subtract 1,2 or 5 chips on their turn, identify the N - and P-positions. (Please do not forget to prove correctness of your asnwer.)

Solution: Let us prove that

$$
g(x)=\left\{\begin{array}{lll}
0 & \text { if } x \equiv 0 & (\bmod 3) \\
1 & \text { if } x \equiv 1 & (\bmod 3) \\
2 & \text { if } x \equiv 2 & (\bmod 3)
\end{array}\right.
$$

is the Sprague-Grundy function for the subtraction game with one pile.
We prove the statement using induction by x. First we need to prove the base cases for $x \leq 4$.

- It is clear that $g(0)=0$ since 0 is a terminal position.
- From 1 there is only one move to 0 ; hence, $g(1)=\operatorname{mex}\{0\}=1$.
- From 2 there are two moves to 0 and to 1 ; hence, $g(2)=\operatorname{mex}\{0,1\}=2$.
- From 3 there are two moves to 1 and to 2 ; hence, $g(3)=\operatorname{mex}\{1,2\}=0$.
- From 4 there are two moves to 0 and to 1 ; hence, $g(4)=\operatorname{mex}\{2,0\}=1$.

Assume that the statement is true for all $y<x$. Note that there are three moves from x : to $x-1$, to $x-2$, and to $x-5$. It is easy to see that $x-5 \equiv x-2(\bmod 3)$; hence $g(x)=\operatorname{mex}\{g(x-1), g(x-2)\}$. Therefore, by considering three cases of the reminder of x modulo 3 we can prove the statement.
2. (10 points) Alice and Bob have several piles of chips. On each turn they can either remove 1 or 2 chips from one pile, or split a pile into two nonempty piles. Players take turns and a player that cannot make a move loses. Find the value of the Sprague-Grundy function for positions with one pile made of n chips. (Please do not forget to prove correctness of your asnwer.)

Solution: Let g be the Sprague-Grundy function for this game. It is clear that the position (x, y) (the position with two piles having x and y chips, respectively) is equivalent to the position (x, y) in the same of this game with itself. Hence, $g(x, y)=g(x) \oplus g(y)$.
As a result,

$$
g(x) \operatorname{mex}(\{g(x-1), g(x-2)\} \cup\{g(y) \oplus g(z): y, z \geq 1, y+z=x\})
$$

for $x \geq 2$ and $g(0)=1$ and $g(1)=1$.
Let us prove that

$$
g(x)=\left\{\begin{array}{lll}
0 & \text { if } x=0 \\
1 & \text { if } x \equiv 1 & (\bmod 4) \\
2 & \text { if } x \equiv 2 & (\bmod 4) \\
0 & \text { if } x \equiv 3 & (\bmod 4) \\
3 & \text { if } x \equiv 0 & (\bmod 4)
\end{array}\right.
$$

The base case for $x \leq 4$ is clear.

- By the above formula, $g(2)=\operatorname{mex}\{g(0), g(1), g(1) \oplus g(1)\}=\operatorname{mex}\{0,1\}=2$.
- By the above formula, $g(3)=\operatorname{mex}\{g(1), g(2), g(1) \oplus g(2)\}=\operatorname{mex}\{1,2,3\}=0$.
- By the above formula, $g(4)=\operatorname{mex}\{g(2), g(3), g(1) \oplus g(3), g(2) \oplus g(2)\}=\operatorname{mex}\{2,0,1,0\}=3$.

Let us now prove the induction step. Assume the statement is true for all $y<x$.

- Let $x \equiv 1(\bmod 4)$ Assume $y+z=x$ and $y, z \geq 1$. We calim that $g(y) \oplus g(z) \neq 1$. Indeed, the only pairs of numbers whose xor gives 1 among $0,1,2,3$ are 0 and 1 , and 2 and 3 .
- If $g(y)=0$ and $g(z)=1$, then $y \equiv 3(\bmod 4)$ and $z \equiv 1(\bmod 4)$. Which implies that $y+z \equiv 0(\bmod 4)$ and this contradicts to the assumption.
- If $g(y)=2$ and $g(z)=3$, then $y \equiv 2(\bmod 4)$ and $z \equiv 0(\bmod 4)$. Which implies that $y+z \equiv 2(\bmod 4)$ and this contradicts to the assumption.

However, $g(x-1)=3$ and $g(x-2)=0$. Hence, $g(x)=1$.

- Let $x \equiv 2(\bmod 4)$ Assume $y+z=x$ and $y, z \geq 1$. We calim that $g(y) \oplus g(z) \neq 2$. Indeed, the only pairs of numbers whose xor gives 2 among $0,1,2,3$ are 0 and 2 , and 1 and 3 .
- If $g(y)=0$ and $g(z)=2$, then $y \equiv 3(\bmod 4)$ and $z \equiv 2(\bmod 4)$. Which implies that $y+z \equiv 1(\bmod 4)$ and this contradicts to the assumption.
- If $g(y)=1$ and $g(z)=3$, then $y \equiv 1(\bmod 4)$ and $z \equiv 0(\bmod 4)$. Which implies that $y+z \equiv 1(\bmod 4)$ and this contradicts to the assumption.

However, $g(x-1)=1, g(x-2)=3$, and $g(x-1) \oplus g(1)=0$. Hence, $g(x)=2$.

- Let $x \equiv 3(\bmod 4)$ Assume $y+z=x$ and $y, z \geq 1$. We calim that $g(y) \oplus g(z) \neq 0$. Indeed, the only pairs of numbers whose xor gives 3 among $0,1,2,3$ are the equal pairs
- If $g(y)=0$ and $g(z)=0$, then $y \equiv 3(\bmod 4)$ and $z \equiv 3(\bmod 4)$. Which implies that $y+z \equiv 2(\bmod 4)$ and this contradicts to the assumption.
- If $g(y)=1$ and $g(z)=1$, then $y \equiv 1(\bmod 4)$ and $z \equiv 1(\bmod 4)$. Which implies that $y+z \equiv 2(\bmod 4)$ and this contradicts to the assumption.
- If $g(y)=2$ and $g(z)=2$, then $y \equiv 2(\bmod 4)$ and $z \equiv 2(\bmod 4)$. Which implies that $y+z \equiv 0(\bmod 4)$ and this contradicts to the assumption.
- If $g(y)=3$ and $g(z)=3$, then $y \equiv 0(\bmod 4)$ and $z \equiv 0(\bmod 4)$. Which implies that $y+z \equiv 0(\bmod 4)$ and this contradicts to the assumption.

However, $g(x-1)=2, g(x-2)=1$.

- Let $x \equiv 0(\bmod 4)$ Assume $y+z=x$ and $y, z \geq 1$. We calim that $g(y) \oplus g(z) \neq 3$. Indeed, xor of two numbers among $0,1,2,3$ is at most 3 . However, $g(x-1)=0, g(x-2)=2$, and $g(x-1) \oplus g(1)=1$. Hence, $g(x)=3$.

