Name:

Pid: \qquad

1. (10 points) Let $m_{1}, n_{1}, m_{2}, n_{2} \in \mathbb{N}$, we say that $\left(m_{1}, n_{1}\right)<\left(m_{2}, n_{2}\right)$ iff either $m_{1}<m_{2}$ or $m_{1}=m_{2}$ and $n_{1}<n_{2}$.

Let $P(m, n)$ be some property of pairs of integers. Assume that we can prove the following statement for all $m, n \in \mathbb{N}$:

$$
\text { if } P(x, y) \text { is true for all } x, y \in \mathbb{N} \text { such that }(x, y)<(m, n) \text {, then } P(m, n) \text { is true. }
$$

Show that we can prove that $P(m, n)$ is true for all $m, n \in \mathbb{N}$.

Solution: We prove the statement using nested induction. Let $Q(m)$ denote the statement: $P(x, y)$ is true for all $x, y \in \mathbb{N}$ such that $x \leq m$. We prove using induction by m that $Q(m)$ is true for all $m \in \mathbb{N}$.
(base case) We prove using induction that $P(1, y)$ is true for all $y \in \mathbb{N}$. Indeed, $\left(x^{\prime}, y^{\prime}\right)<(1, y)$ iff $x^{\prime}=1$ and $y^{\prime}<y$; hence, by the assumption, if $P(1, y)$ is true for all $y^{\prime}<y$, then $P(1, y)$ is true. Therefore, by the strong induction principle, $P(1, y)$ is true for all $y \in \mathbb{N}$. As a result, we proved $Q(1)$.
(induction step) Let us prove that if $Q(m)$ is true, then $Q(m+1)$ is also true. Assume that $Q(m)$ is true. Let us prove using induction that $P(m+1, y)$ is true for all $y \in \mathbb{N}$.

- Note that if $\left(x^{\prime}, y^{\prime}\right)<(m+1,1)$ then $x^{\prime} \leq m$. Therefore, by the assumption of the problem and the assumption that $Q(m)$ is true, $P(m+1,1)$ is true.
- Assume that $P(m+1,1), \ldots, P(m+1, y-1)$ are true. Note that if $\left(x^{\prime}, y^{\prime}\right)<(m+1, y)$, then either $x^{\prime} \leq m$ or $\left(x^{\prime}, y^{\prime}\right)$ is equal to one of $(m+1,1), \ldots,(m+1, y-1)$. Therefore, by the assumption of the problem and the assumption that $Q(m)$ is true, $P(m+1, y)$ is true.

Hence, $P(m+1, y)$ is true for all $y \in \mathbb{N}$.
As a result, by the induction principle, $Q(m)$ is true for all $m \in \mathbb{N}$.
2. (10 points) In the subtraction game where players may subtract 1,2 or 5 chips on their turn, identify the N - and P-positions. (Please do not forget to prove correctness of your asnwer.)

Solution: Let us prove using induction that n is a P-position in this game only if $n \equiv 0(\bmod 3)$. The base case for $n \leq 9$ can be verifyed using direct computations. Let us prove the induction step from n to $n+1$. Assume that $m \leq n$ is a P-position iff $m \equiv 0(\bmod 3)$.

- If $n+1 \equiv 0(\bmod 3)$, then we can go to $n \equiv 2(\bmod 3), n-1 \equiv 1(\bmod 3)$, and $n-4 \equiv 1$ $(\bmod 3)$. By the induction hypothesis, all these positions are N-positions, hence, $n+1$ is a P-position.
- If $n+1 \equiv 1(\bmod 3)$, then we can go to $n \equiv 0(\bmod 3)$, which, by the induction hypothesis, is a P -position.
- If $n+1 \equiv 2(\bmod 3)$, then we can go to $n-1 \equiv 0(\bmod 3)$, which, by the induction hypothesis, is a P -position.

As a result, by the induction principle, we proved the statement.

