Name: _____

Pid: _____

1. (10 points) Let $m_1, n_1, m_2, n_2 \in \mathbb{N}$, we say that $(m_1, n_1) < (m_2, n_2)$ iff either $m_1 < m_2$ or $m_1 = m_2$ and $n_1 < n_2$.

Let P(m, n) be some property of pairs of integers. Assume that we can prove the following statement for all $m, n \in \mathbb{N}$:

if P(x, y) is true for all $x, y \in \mathbb{N}$ such that (x, y) < (m, n), then P(m, n) is true.

Show that we can prove that P(m,n) is true for all $m, n \in \mathbb{N}$.

Solution: We prove the statement using nested induction. Let Q(m) denote the statement: P(x, y) is true for all $x, y \in \mathbb{N}$ such that $x \leq m$. We prove using induction by m that Q(m) is true for all $m \in \mathbb{N}$.

- (base case) We prove using induction that P(1, y) is true for all $y \in \mathbb{N}$. Indeed, (x', y') < (1, y) iff x' = 1 and y' < y; hence, by the assumption, if P(1, y) is true for all y' < y, then P(1, y) is true. Therefore, by the strong induction principle, P(1, y) is true for all $y \in \mathbb{N}$. As a result, we proved Q(1).
- (induction step) Let us prove that if Q(m) is true, then Q(m+1) is also true. Assume that Q(m) is true. Let us prove using induction that P(m+1, y) is true for all $y \in \mathbb{N}$.
 - Note that if (x', y') < (m + 1, 1) then $x' \le m$. Therefore, by the assumption of the problem and the assumption that Q(m) is true, P(m + 1, 1) is true.
 - Assume that $P(m+1,1), \ldots, P(m+1, y-1)$ are true. Note that if (x',y') < (m+1,y), then either $x' \leq m$ or (x',y') is equal to one of $(m+1,1), \ldots, (m+1,y-1)$. Therefore, by the assumption of the problem and the assumption that Q(m) is true, P(m+1,y) is true.

Hence, P(m+1, y) is true for all $y \in \mathbb{N}$.

As a result, by the induction principle, Q(m) is true for all $m \in \mathbb{N}$.

2. (10 points) In the subtraction game where players may subtract 1, 2 or 5 chips on their turn, identify the N- and P-positions. (Please do not forget to prove correctness of your assnwer.)

Solution: Let us prove using induction that n is a P-position in this game only if $n \equiv 0 \pmod{3}$. The base case for $n \leq 9$ can be verifyed using direct computations. Let us prove the induction step from n to n + 1. Assume that $m \leq n$ is a P-position iff $m \equiv 0 \pmod{3}$.

- If $n + 1 \equiv 0 \pmod{3}$, then we can go to $n \equiv 2 \pmod{3}$, $n 1 \equiv 1 \pmod{3}$, and $n 4 \equiv 1 \pmod{3}$. By the induction hypothesis, all these positions are N-positions, hence, n + 1 is a P-position.
- If $n + 1 \equiv 1 \pmod{3}$, then we can go to $n \equiv 0 \pmod{3}$, which, by the induction hypothesis, is a P-position.
- If $n+1 \equiv 2 \pmod{3}$, then we can go to $n-1 \equiv 0 \pmod{3}$, which, by the induction hypothesis, is a P-position.

As a result, by the induction principle, we proved the statement.