\qquad

Pid: \qquad

1. (10 points) We say that L is a B-decision list
(base case) if either L is a number $y \in \mathbb{Z}$, or
(recursion step) L is equal to $\left(f, v, L^{\prime}\right)$ where $f: \mathbb{Z} \rightarrow\{0,1\}, v \in \mathbb{Z}$, and L is a B-decision list.
We can also define the $\operatorname{value} \operatorname{val}(L, x)$ of a B-decision list L at $x \in \mathbb{Z}$.
(base case) If L is a number y, then $\operatorname{val}(L, x)=y$, and
(recursion step) if $L=\left(f, v, L^{\prime}\right)$, then

$$
\operatorname{val}(L, x)=\left\{\begin{array}{ll}
v & \text { if } f(x)=1 \\
\operatorname{val}\left(L^{\prime}, x\right) & \text { otherwise }
\end{array} .\right.
$$

Similarly one may define the length $\ell(L)$ of a B-decition list L.
(base case) If L is a number y, then $\ell(L)=1$, and
(recursion step) if $L=\left(f, v, L^{\prime}\right)$, then $\ell(L)=\ell\left(L^{\prime}\right)+1$.
Assume that $\operatorname{val}(L, x)=x$ for any $x \in[1000]$ show that $\ell(L) \geq 1000$.

Solution: For a B-decision list L, we define $V(L)=\{\operatorname{val}(L, x): x \in \mathbb{Z}\}$.
We prove using structural induction that the size of $V(L)$ is at most $\ell(L)$.
Let S^{\prime} be the set of B-decition lists such that the size of $V(L)$ is at most $\ell(L)$.

- Note that if L is a number y, then $\operatorname{val}(L, x)=y$ for all $x \in \mathbb{Z}$; therefore $L \in S^{\prime}$.
- Assume $L^{\prime} \in S^{\prime}$ and $L=\left(f, v, L^{\prime}\right)$. It is clear that $V(L) \subseteq V\left(L^{\prime}\right) \cup\{v\}$. Therefore the size of $V(L)$ is at most $\ell\left(L^{\prime}\right)+1=\ell(L)$.

As a result, by the structural induction theorem, $S^{\prime}=S$. Which means that the size of $V(L)$ is at most $\ell(L)$.
Assume that $\operatorname{val}(L, x)=x$ for any $x \in[1000]$. This implies that $V(L) \geq 1000$; hence, $\ell(L) \geq 1000$ by the previous observation.
2. (10 points) Let S be the minimal set such that $3 \in S$ and $(x+y) \in S$ for any $x, y \in S$. (In other words, S is generated by $\{f\}$ from $\{3\}$, where $f(x, y)=x+y$.) Show that $S=\{3 k: k \in \mathbb{N}\}$.

Solution: The statement consists of two parts: $S \subseteq\{3 k: k \in \mathbb{N}\}$ and $S \supseteq\{3 k: k \in \mathbb{N}\}$.

- Note that $\{3\} \subseteq\{3 k: k \in \mathbb{N}\}$ and $f(3 k, 3 \ell)=3 k+3 \ell=3(k+\ell)$. Therefore, by the principle of structural induction $S \subseteq\{3 k: k \in \mathbb{N}\}$.
- We prove using induction by k that $3 k \in S$ for all $k \in \mathbb{N}$. The base case for $k=1$ is true since $3 \in S$. Let us prove the induction step from k to $k+1$. Assume that $3 k \in S$; then $f(3 k, 3)=3(k+1) \in S$ as well. As a result, by the induction principle, $3 k \in S$ for all $k \in \mathbb{N}$; i.e., $S \supseteq\{3 k: k \in \mathbb{N}\}$.

