Name:
Pid: \qquad

1. (10 points) We say that L is a B-decision list
(base case) if either L is a number $y \in \mathbb{Z}$, or
(recursion step) L is equal to $\left(f, v, L^{\prime}\right)$ where $f: \mathbb{Z} \rightarrow\{0,1\}, v \in \mathbb{Z}$, and L is a B-decision list.
We can also define the $\operatorname{value} \operatorname{val}(L, x)$ of a B-decision list L at $x \in \mathbb{Z}$.
(base case) If L is a number y, then $\operatorname{val}(L, x)=y$, and (recursion step) if $L=\left(f, v, L^{\prime}\right)$, then

$$
\operatorname{val}(L, x)= \begin{cases}v & \text { if } f(x)=1 \\ \operatorname{val}\left(L^{\prime}, x\right) & \text { otherwise }\end{cases}
$$

Similarly one may define the length $\ell(L)$ of a B-decition list L.
(base case) If L is a number y, then $\ell(L)=1$, and (recursion step) if $L=\left(f, v, L^{\prime}\right)$, then $\ell(L)=\ell\left(L^{\prime}\right)+1$.

Assume that $\operatorname{val}(L, x)=x$ for any $x \in[1000]$ show that $\ell(L) \geq 1000$.
2. (10 points) Let S be the minimal set such that $3 \in S$ and $(x+y) \in S$ for any $x, y \in S$. (In other words, S is generated by $\{f\}$ from $\{3\}$, where $f(x, y)=x+y$.) Show that $S=\{3 k: k \in \mathbb{N}\}$.

