Name: _____

Pid: _____

1. (10 points) We say that L is a B-decision list

(base case) if either L is a number $y \in \mathbb{Z}$, or

(recursion step) L is equal to (f, v, L') where $f : \mathbb{Z} \to \{0, 1\}, v \in \mathbb{Z}$, and L is a B-decision list.

We can also define the value val(L, x) of a *B*-decision list *L* at $x \in \mathbb{Z}$.

(base case) If L is a number y, then val(L, x) = y, and (recursion step) if L = (f, v, L'), then

$$\operatorname{val}(L, x) = \begin{cases} v & \text{if } f(x) = 1\\ \operatorname{val}(L', x) & \text{otherwise} \end{cases}.$$

Similarly one may define the length $\ell(L)$ of a *B*-decition list *L*.

(base case) If L is a number y, then $\ell(L) = 1$, and (recursion step) if L = (f, v, L'), then $\ell(L) = \ell(L') + 1$.

Assume that val(L, x) = x for any $x \in [1000]$ show that $\ell(L) \ge 1000$.

2. (10 points) Let S be the minimal set such that $3 \in S$ and $(x + y) \in S$ for any $x, y \in S$. (In other words, S is generated by $\{f\}$ from $\{3\}$, where f(x, y) = x + y.) Show that $S = \{3k : k \in \mathbb{N}\}$.