Name: \qquad

Pid: \qquad

1. (100 points) Tick if the answer for the question is yes (this is the only question where you do not need to prove correctness of your answer).

Is the Nim position $(3,9,12)$ an N -position.Is 8 in the subtraction game where players may subtract 1 and 4 chips on their turn an N-position?Is Bitwise XOR of 110011 and 010011100000.Is Nim-sum of 14 and 2127 ?Is $\operatorname{mex}\{0,1,3\}$ equal to 3 ?Is (a, b) a Nash equilibrium in the following game?

	a	b	c
a	1,1	2,3	5,1
b	0,0	0,10	0,0
c	10,1	1,7	2,2

	a	b	c
a	1,1	2,3	5,1
b	0,0	0,10	0,0
c	10,1	1,7	2,2

	a	b
a	1,1	2,3
b	0,0	0,10

Lloyd plays the strategy a with probability $1 / 2$ and the strategy b with probability $1 / 2$. Dunne plays the strategy a with probability $1 / 4$ and the strategy b with probability $3 / 4$.
Is 2 the average gain of Lloyd in this case?Does the randomized decision tree $\left\{T_{1}, T_{2}\right\}$ has expected cost $3 / 2$ on $x_{1}=0, x_{2}=1, x_{3}=1$?

2. (10 points) Consider the Misére subtraction game where players may subtract 2,3 or 5 chips on their turn, identify the N and P positions.
3. (10 points) Two players one by one put kings on the 9×9 board such that none of them attack each other. Determine the winning strategy.
4. (10 points) Eddie and Lana play a game where they each simultaneously announce an integer between 1 and 4 (inclusive). Let x be the number chosen by Eddie, and let y be the number chosen by Lana. If $x+y \equiv 0(\bmod 3)$, then Eddie wins. Otherwise, Lana wins. The losing player pays $|x-y|$ (i.e. the difference of the two numbers) to the winning player. Construct the payoff matrix, and find Nash equilibria in pure strategies(or prove that they do not exist).
5. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function such that $f\left(x_{1}, \ldots, x_{n}\right)=0$ iff $x_{1}=\cdots=x_{n}=0$.
(a) (10 points) Show that $D(f)=n$.
(b) (5 points) Show that $R(f) \geq n$.
6. (5 points) We say that a randomized decision tree $\left\{T_{i}\right\}_{i \in I}$ represents a function f with bounded error ϵ iff for every $a \in\{0,1\}^{n}, T_{i}(a)=f(a)$ with probability $1-\epsilon$, i.e. for every $a \in\{0,1\}^{n}$ there is $J_{a} \subseteq I$ such that $\left|J_{a}\right| \geq(1-\epsilon) \cdot|I|$ and $f(a)=T_{i}(a)$ for every $i \in J_{a}$. We denote by $R_{\epsilon}(f)$ the minimal depth of a randomized decision tree representing f with bounded error ϵ.
We denote by DIST_{n} the set of all functions $X:\{0,1\}^{n} \rightarrow \mathbb{R}$ (we say that X is a distribution over $\left.\{0,1\}^{n}\right)$ such that $\sum_{a \in\{0,1\}^{n}} X(a)=1$.
Finally, we say that a decision tree T heuristically represents a function f with bounded error ϵ with respect to a distribution X iff $f(a)=T(a)$ with probability $1-\epsilon$ with respect to distribution X, i.e. there is a set $C^{T} \subseteq\{0,1\}^{n}$ such that $\sum_{a \in C} X(a) \geq(1-\epsilon)$ and $f(a)=T(a)$ for every $a \in C^{T}$. We denote by $D_{\epsilon}^{(X)}(f)$ the minimal depth of a tree heuristically representing f with bounded error ϵ with respect to X.
Show that $R_{\epsilon}(f) \leq \max _{X \in \mathrm{DIST}_{n}} D_{\epsilon}^{X}(f)$.

