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1. (100 points) Tick if the answer for the question is yes (this is the only question where you do not need
to prove correctness of your answer).

� Is the Nim position (3, 9, 12) an N-position.

� Is 8 in the subtraction game where players may subtract 1 and 4 chips on their turn an
N-position?

� Is Bitwise XOR of 110011 and 010011 100000.

� Is Nim-sum of 14 and 21 27?

� Is mex{0, 1, 3} equal to 3?

� Is (a, b) a Nash equilibrium in the following game?

a b c
a 1, 1 2, 3 5, 1
b 0, 0 0, 10 0, 0
c 10, 1 1, 7 2, 2

� Is (c, c) Pareto optimal in the following game?

a b c
a 1, 1 2, 3 5, 1
b 0, 0 0, 10 0, 0
c 10, 1 1, 7 2, 2

� Ian and Masha are playing a game. In this game the starting configuration is a single heap of
objects, and the two players take turn splitting a single heap into two heaps of different sizes.
The game ends when only heaps of size two and smaller remain, none of which can be split
unequally. Is 2 the value of the Grundy function of this game for one heap with 7 objects?

� Lloyd (the first player) and Dunne (the second player) play the following game.

a b
a 1, 1 2, 3
b 0, 0 0, 10

Lloyd plays the strategy a with probability 1/2 and the strategy b with probability 1/2. Dunne
plays the strategy a with probability 1/4 and the strategy b with probability 3/4.

Is 2 the average gain of Lloyd in this case?

� Does the randomized decision tree {T1, T2} has expected cost 3/2 on x1 = 0, x2 = 1, x3 = 1?
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2. (10 points) Consider the Misére subtraction game where players may subtract 2, 3 or 5 chips on their
turn, identify the N and P positions.
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3. (10 points) Two players one by one put kings on the 9 × 9 board such that none of them attack each
other. Determine the winning strategy.
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4. (10 points) Eddie and Lana play a game where they each simultaneously announce an integer between
1 and 4 (inclusive). Let x be the number chosen by Eddie, and let y be the number chosen by Lana.
If x + y ≡ 0 (mod 3), then Eddie wins. Otherwise, Lana wins. The losing player pays |x − y| (i.e.
the difference of the two numbers) to the winning player. Construct the payoff matrix, and find Nash
equilibria in pure strategies(or prove that they do not exist).
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5. Let f : {0, 1}n → {0, 1} be a Boolean function such that f(x1, . . . , xn) = 0 iff x1 = · · · = xn = 0.

(a) (10 points) Show that D(f) = n.
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(b) (5 points) Show that R(f) ≥ n.
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6. (5 points) We say that a randomized decision tree {Ti}i∈I represents a function f with bounded error
ε iff for every a ∈ {0, 1}n, Ti(a) = f(a) with probability 1− ε, i.e. for every a ∈ {0, 1}n there is Ja ⊆ I
such that |Ja| ≥ (1− ε) · |I| and f(a) = Ti(a) for every i ∈ Ja. We denote by Rε(f) the minimal depth
of a randomized decision tree representing f with bounded error ε.

We denote by DISTn the set of all functions X : {0, 1}n → R (we say that X is a distribution over
{0, 1}n) such that

∑
a∈{0,1}n

X(a) = 1.

Finally, we say that a decision tree T heuristically represents a function f with bounded error ε with
respect to a distribution X iff f(a) = T (a) with probability 1 − ε with respect to distribution X, i.e.
there is a set CT ⊆ {0, 1}n such that

∑
a∈C

X(a) ≥ (1− ε) and f(a) = T (a) for every a ∈ CT . We denote

by D
(X)
ε (f) the minimal depth of a tree heuristically representing f with bounded error ε with respect

to X.

Show that Rε(f) ≤ max
X∈DISTn

DX
ε (f).


